Master Syllabus

Department of Geography

GEOG 445/545: Geographic Information Systems Application Design and Development

Course Description:

Fundamentals of geographic information systems (GIS) programming. Develop and implement customized GIS applications. Exposure to widely used GIS software programming environments. (3 credit hours).

Prerequisite: GEOG 265, 344, or permission of the instructor.

Course Objectives

The objectives of the course are to provide the student with:

1. an overview of widely used programming environments,
2. a background in GIS programming techniques and principles, and
3. hands-on programming experience with widely used GIS software.

Each Student will be required to do laboratory exercises, some of it outside of class hours.

Course Rationale:

This is the third course in a 4-course sequence. Many employees are looking for GIS personnel with these skills.

Course Content and Format:

The content of the course is based on the programming environments supported by Environmental Systems Research Institute’s (ESRI) GIS software. The following course content reflects widely used programming languages used to automate ESRI GIS software. The content is likely to change based on the current development environments and/or the expertise of the instructor.

Part I. Automating Geoprocessing

I. Programming Basics for Python
 a. Basics
 b. Variables and data types
 c. Statements
 d. Strings
 e. Lists
f. Flow Control Statements
g. Reading and Writing Text Files

II. ESRI Virtual Campus Course - Basics of Python (for ArcGIS 10)
a. Why Python?
i. Where can you run your scripts?
ii. Using the Python window
iii. Set up the Python window
b. Introducing Python
i. Working with variables
ii. What types of data can Python use?
iii. Adding functionality to your scripts
iv. Work with variables and data types
v. Making decisions and controlling the flow of your script
vi. Control the flow of your script
vii. Tips for writing successful scripts
viii. Handling errors
ix. Find common Python syntax errors
x. Managing Python error messages
c. Working with Python in ArcGIS
i. Python snippets
ii. Geoprocessing example
iii. Rewrite the Clip tool using variables
iv. Create a geoprocessing script to support notification

III. Geoprocessing with Python
a. Accessing Tools
i. Importing ArcPy
ii. Adding toolboxes
iii. Using tools
iv. Using functions
v. Using Classes
vi. Using environment settings
vii. Understanding message types and severity
viii. Error handling
ix. Setting paths to data
b. Working with sets of data
i. Listing data
ii. Working with multivalue inputs
c. Accessing geographic data
 i. Describing data
 ii. Using fields
 iii. Using the spatial reference class
 iv. Checking for the existence of data
 v. Accessing data using cursors
 vi. Specifying a query
 vii. Working with geometry

d. Creating script tools
 i. Understanding script tool parameters
 ii. Adding a script tool
 iii. Setting script tool parameters

Part II. ArcGIS Server & Silverlight

A. ArcGIS Server
B. Silverlight
C. ArcGIS Server and Silverlight
D. Visual Studio Silverlight Application
E. XAML Overview
F. Visual Studio Silverlight Solution
G. Map Services
H. Map Controls
I. Map Layers
J. Feature Layers
K. Graphics

Methods for Evaluating Student Performance

Forms of evaluation might include examinations, quizzes, and programming assignments. Graduate students are required to do a literature review paper and/or an additional project in addition to class requirements.

Evaluation of the Course

Student evaluation of the course, administered anonymously.