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1 Introduction

The aim of this paper is to illustrate how the stability of a stochastic dynamic
system is measured using the Lyapunov exponents. Speci…cally, we use a feed­
forward neural network to estimate these exponents as well as asymptotic results
for this estimator to test for unstable (chaotic) dynamics, where a positive ex­
ponent is an operational de…nition of chaos. The data set used is spot electricity
prices from the Nordic power exchange market, Nord Pool.

The estimation of the Lyapunov exponents using the feedforward neural net­
work can be found in earlier studies such as Dechert and Gencay [4], Gencay and
Dechert [7], McCa¤rey et al [13] and Nychka et al [14]. The empirical estimation
of these exponents has been proved to be quite accurate when applying chaotic
series with additive noise in simulations. However, the statistical properties of
the Lyapunov exponent estimator were unknown until Shintani and Linton’s
2004 paper (see [16]), and without the statistical distribution for this estimator,
no statistical conclusion can be drawn on the dynamic structure of the empirical
data.

This paper applies the statistical distribution derived in Shintani and Lin­
ton [16] to test the stability of spot electricity prices from Nord Pool, and the
stochastic dynamic system that generates these prices appears to be chaotic in
one case since the null hypothesis of a non­positive largest Lyapunov exponent
is rejected at the 1 per cent level.

The rest of this short paper is organized as follows: The Lyapunov exponents
are in focus in Section 2, the empirical illustration is carried out in Section 3,
and Section 4 concludes the paper.

2 The Lyapunov exponents

The aim of this section is fourfold: (i) to de…ne the Lyapunov exponents of
a stochastic dynamic system; (ii) to motivate why these exponents provide a
measure of the stability of a stochastic dynamic system; (iii) to demonstrate
how the Lyapunov exponents can be estimated from time series data; and (iv)
to demonstrate how hypothesis tests of these exponents can be constructed.

2.1 De…nition of the Lyapunov exponents

As argued in Bask and de Luna [2] and [3], and to be further explained in Section
2.2, the Lyapunov exponents can be used in the determination of the stability of
a stochastic dynamic system. Speci…cally, assume that the stochastic dynamic
system, f : Rn ! Rn, generating, for example, asset returns is

St+1 = f (St) + "s
t+1; (1)

where St and "s
t are the state of the system and a shock to the system, respec­

tively, both at time t 2 [1; 2; : : : ;1]. For an n­dimensional system as in (1),
there are n Lyapunov exponents that are ranked from the largest to the smallest
exponent:

¸1 ¸ ¸2 ¸ ::: ¸ ¸n; (2)
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and it is these exponents that provide information on the stability properties of
the dynamic system f in (1).

Now, how are the Lyapunov exponents in (2) de…ned? Temporarily, assume
that there are no shocks to the dynamic system f in (1), and consider how the
system ampli…es a small di¤erence between the initial states S0 and S0

0:

Sj ¡ S0
j = f j (S0) ¡ f j (S0

0) ' Df j (S0) (S0 ¡ S0
0) ; (3)

where f j (S0) = f (¢ ¢ ¢ f (f (S0)) ¢ ¢ ¢ ) denotes j successive iterations of the dy­
namic system starting at state S0, and where Df is the Jacobian of the system:

Df j (S0) = Df (Sj¡1)Df (Sj¡2) ¢ ¢ ¢Df (S0) : (4)

Then, associated with each Lyapunov exponent, ¸i, i 2 [1; 2; : : : ; n], there are
nested subspaces U i ½ Rn of dimension n + 1 ¡ i with the property that

¸i ´ lim
j!1

loge

°°Dfj (S0)
°°

j
= lim

j!1

1

j

j¡1X
k=0

loge kDf (Sk)k ; (5)

for all S0 2 U i ¡ U i+1. Due to Oseledec’s multiplicative ergodic theorem, the
limits in (5) exist and are independent of S0 almost surely with respect to
the measure induced by the process fStg1

t=1.
1 Then, allow for shocks to the

dynamic system f in (1), meaning that the aforementioned measure is induced
by a stochastic process.

2.2 Motivation of the Lyapunov exponents

The reason why the Lyapunov exponents provide a measure of the stability of
a stochastic dynamic system may be seen by considering two di¤erent starting
values of the system, where the di¤erence is an exogenous shock at time t = 0.
The largest Lyapunov exponent, ¸1, measures the slowest exponential rate of
convergence of two trajectories of the dynamic system starting at these two
di¤erent values at time t = 0, but with identical exogenous shocks at times
t > 0. Indeed, ¸1 measures the convergence of a shock in the direction de…ned
by the eigenvector corresponding to this exponent. If the di¤erence between the
two starting values lies in another direction of Rn, then the convergence is faster.
Thus, ¸1 measures the “worst case scenario.”2 In particular, when ¸1 > 0, the
two trajectories diverge from each other, and for a bounded stochastic dynamic
system, a positive exponent is an operational de…nition of chaotic dynamics.

2.3 Estimation of the Lyapunov exponents

Since the actual functional form of the dynamic system f in (1) is not known,
it may seem like an impossible task to determine the stability of the system.
However, it is possible to reconstruct the dynamics of the system using only a

1 See Guckenheimer and Holmes [9] for a careful de…nition of the Lyapunov exponents and
their properties.

2 An extensive discussion of the Lyapunov exponents as a measure of the stability of a
stochastic dynamic system is provided in Bask and de Luna [2]. For example, it is argued
therein that the average of the Lyapunov exponents, ¸ ´ 1

n

Pn
i=1 ¸i, is useful as a measure

of an “average scenario.”
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scalar time series, and, then, measure the stability of this reconstructed system.
Therefore, associate the dynamic system f in (1) with an observer function,
g : Rn ! R, that generates observed asset returns:

st = g (St) + "m
t ; (6)

where st 2 St and "m
t are the asset return and a measurement error, respectively,

both at time t. Thus, (6) means that the asset return series

fstgN
t=1 ; (7)

is observed, which is used to reconstruct the dynamics of the system f in (1),
where N is the number of consecutive returns in the time series.

Speci…cally, the observations in a scalar time series, like the asset return
series in (7), contain information about unobserved state variables that can be
used to de…ne a state in present time. Therefore, let

T = (T1; T2; : : : ; TM )0 ; (8)

be the reconstructed trajectory, where Tt is the reconstructed state at time t
and M is the number of states on the reconstructed trajectory. Each Tt is given
by

Tt = fst+m¡1; st+m¡2; : : : ; stg ; (9)

where m is the embedding dimension, and time t 2 [1; 2; : : : ; N ¡ m + 1]. Thus,
T is an M £ m matrix and the constants M , m and N are related as M =
N ¡ m + 1.

Takens [17] proved that the map

©(St) =
©
g

¡
f0 (St)

¢
; g

¡
f1 (St)

¢
; : : : ; g

¡
fm¡1 (St)

¢ª
; (10)

which maps the n­dimensional state St onto the m­dimensional state Tt, is an
embedding if m > 2n. This means that the map is a smooth map that performs
a one­to­one coordinate transformation and has a smooth inverse. A map that
is an embedding preserves topological information about the unknown dynamic
system, like the Lyapunov exponents, and, in particular, the map induces a
function, h : Rm ! Rm, on the reconstructed trajectory,

Tt+1 = h (Tt) ; (11)

which is topologically conjugate to the unknown dynamic system f in (1). That
is,

hj (Tt) = © ± f j ± ©¡1 (Tt) : (12)

Thus, h in (11) is a reconstructed dynamic system that has the same Lyapunov
exponents as the unknown dynamic system f in (1).3

3 Since the m­dimensional system h in (11) has a larger dimension than the n­dimensional
system f in (1), the number of spurious Lyapunov exponents are m¡n. This issue is discussed
in Dechert and Gencay [5] and [6] and Gencay and Dechert [8].
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Now, in order to estimate the Lyapunov exponents of the dynamic system
generating asset returns, one has to estimate h in (11). However, since

h :

0
BBB@

st+m¡1

st+m¡2

...
st

1
CCCA ¡!

0
BBB@

v (st+m¡1; st+m¡2; : : : ; st)
st+m¡1

...
st+1

1
CCCA ; (13)

the estimation of h reduces to the estimation of v:

st+m = v (st+m¡1; st+m¡2; : : : ; st) : (14)

Moreover, note that the Jacobian of h at the reconstructed state Tt is

Dh (Tt) =

0
BBBBB@

@v
@st+m¡1

@v
@st+m¡2

@v
@st+m¡3

¢ ¢ ¢ @v
@st+1

@v
@st

1 0 0 ¢ ¢ ¢ 0 0
0 1 0 ¢ ¢ ¢ 0 0
...

...
...

...
...

0 0 0 ¢ ¢ ¢ 1 0

1
CCCCCA

: (15)

We use a feedforward neural network to estimate the above derivatives and
to derive the Lyapunov exponents in (5) (see Dechert and Gencay [4], Gencay
and Dechert [7], McCa¤rey et al [13] and Nychka et al [14]). A neural network
model with q hidden units, uit, and m inputs, xjt, can be represented as

8<
:

st = ¯0 +
Pq

i=1 ¯iuit + "t

uit = 1
1+exp(¡wit)

wit = °0t +
Pm

j=1 °ijxjt

; (16)

where "t is a random error, and time t 2 [1; 2; : : : ; N ¡ m + 1]. The input
variable xjt in the estimation of a dynamic system are the lagged dependent
variables, st¡1, st¡2, : : :, st¡m. The parameters to be estimated in the model
are ¯i, °ij and the variance of "t, and we use nonlinear least squares to estimate
these parameters.

Hornik et al [10] show that the mapping and its derivatives of any unknown
functional form can be approximated by the neural network model in (16).
This universal approximation property enables us to apply the estimates of the
derivatives from the neural network for the estimates of the derivatives in (15),
and the estimation of the Lyapunov exponents in (5) can be derived. In choosing
the best model, we use the Schwarz Information Criterion (SIC) as in Nychka
et al [14] to determine the numbers of hidden units and inputs.

2.4 Inference of the Lyapunov exponents

Shintani and Linton [16] derive the asymptotic distribution of a neural net­
work estimator of the Lyapunov exponents. Speci…cally, given some technical
conditions (see [16] for details), they show that

p
M

³b̧
iM ¡ ¸i

´
=) N (0; Vi) ; (17)
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where b̧
iM is the estimator of the i:th Lyapunov exponent, based on the M

reconstructed states on the trajectory, Vi is the variance of the i:th Lyapunov
exponent, and i 2 [1; 2; : : : ; n]. The stability of a stochastic dynamic system can
be measured by the estimates of these exponents, and if the value of the largest
exponent is positive, then the system appears to be chaotic.

Therefore, to test the stability of a dynamic system, we consider the following
null and alternative hypotheses,

H0 : ¸i · 0; H1 : ¸i > 0; (18)

and the test statistics is

bti =
b̧

iMq bVi

M

; (19)

where bVi is a consistent estimator of Vi (see Andrews [1]), and i 2 [1; 2; : : : ; n].
Thus, the null hypothesis is rejected when

bti ¸ z®; (20)

where the signi…cance level is

Pr [Z ¸ z®] = ®; (21)

where Z is the standard normal random variable, and i 2 [1; 2; : : : ; n].

3 Illustration: stability of electricity prices

The Nordic power exchange market and the data set used are described in
Section 3.1, and the empirical results are found in Section 3.2 that also includes
a sensitivity analysis of the results.

3.1 Nord Pool and data set used

Nord Pool is a multi­national exchange for trade in power, joining the Nordic
countries. Norway was, in 1991, the …rst of the Nordic countries to deregulate
the power market, and Nord Pool ASA was established in 1993, then under the
name Statnett Marked AS. Sweden started the deregulation process in 1991,
and went step­wise to a deregulated power market. January 1, 1996, was the
start­up of the joint Norwegian­Swedish power exchange market, renamed to
Nord Pool ASA.

Finland started a power exchange market of its own, EL­EX, in August
1996, and joined Nord Pool in 1997. In 1999, Elbas is launched as a separate
market for power balance adjustments in Sweden and Finland, giving a fully
integrated market between Norway, Sweden and Finland. Denmark Nord Pool
Consulting is established in 1998, and Western Denmark joins the market in
1999 as a Nordic power exchange price area. When Eastern Denmark joins in
2000, the Nordic power exchange market becomes fully integrated. See Table 1
for the speci…c dates in the integration process.

[Table 1 about here.]
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The data set used is spot electricity prices from Nord Pool. Speci…cally, it is
the daily average of the system price for the period January 1, 1993, to December
31, 2005. The data are analyzed split in parts with the natural breakpoints
when a new country is joining the common market. Since the prices are not
stationary, we use the returns, which is the logarithm­di¤erence of the prices, in
the empirical analysis. See Tables 2a­b for the results of the stationarity tests
of the time series.

[Tables 2a­b about here.]

3.2 Empirical results

For each time series, we estimated the Lyapunov exponents making use of 4, 8
and 12 inputs, respectively, to the feedforward neural network. Moreover, the
number of hidden units in the neural network in each case runs from 1 unit
to 12 units.4 The speci…c estimate chosen for each number of inputs is when
SIC is minimized. In Tables 3a­e, the estimates of the Lyapunov exponents that
minimizes SIC in each sub­period in the integration process in the power market
is reported, including standard errors.5

[Tables 3a­e about here.]

Clearly, there is no unstable (chaotic) dynamics in the time series since all
estimates of the largest Lyapunov exponent are negative.

When inspecting the time series, its clear that there are some extreme values,
outliers. In order to see their impact on the result, we eliminated the outliers
from the time series and performed the same analysis as above.6 See Tables
4a­e for the results.

[Tables 4a­e about here.]

When eliminating the outliers, the dynamic system appears to be chaotic for
the period July 1, 1999, to September 30, 2000, since the null hypothesis in (18)
is rejected for the largest Lyapunov exponent at the 1 per cent level. For all
other time series, there is no chaotic dynamics.

4 Concluding remarks

We should also mention impulse­response functions as another tool to measure
the stability of a stochastic dynamic system. Speci…cally, Koop et al [11] and
Potter [15] extend, in an appealing way, the linear technique of impulse­response
functions to the non­linear case, although they show that there is no unique
de…nition of such a function when a non­linear dynamic system is considered.
Certainly, impulse­response functions are useful graphical tools in the non­linear

4 We have used NETLE 4, a computer program developed by C.­M. Kuan, T. Liu and R.
Gencay, when estimating the Lyapunov exponents (see Gencay and Dechert [7] and Kuan and
Liu [12] for details).

5 Detailed results of the estimations are available on request from the authors.
6 The excluded outliers are from February 28, 1994, to March 2, 1994, December 8, 1998,

January 24, 2000, February 5, 2001, from December 5, 2002, to January 14, 2003. In total,
44 outliers are excluded.
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case, even if they are less appropriate when inference needs to be performed on
a change in the stability. It is, therefore, we recommend the estimation and
inference of the Lyapunov exponents to measure the stability of a stochastic
dynamic system.

References

[1] Andrews, D.W.K. (1991). Heteroskedasticity and Autocorrelation Consis­
tent Covariance Matrix Estimation. Econometrica, 59, 817­858.

[2] Bask, M. and de Luna, X. (2002). Characterizing the Degree of Stability of
Non­linear Dynamic Models. Studies in Nonlinear Dynamics and Econo­
metrics, 6 (1) article 3.

[3] Bask, M. and de Luna, X. (2005). EMU and the Stability and Volatility of
Foreign Exchange: Some Empirical Evidence. Chaos, Solitons and Fractals,
25, 737­750.

[4] Dechert, W.D. and Gencay, R. (1992). Lyapunov Exponents as a Nonpara­
metric Diagnostic for Stability Analysis. Journal of Applied Econometrics,
7, S41­S60.

[5] Dechert, W.D. and Gencay, R. (1996). The Topological Invariance of Lya­
punov Exponents in Embedded Dynamics. Physica D, 90, 40­55.

[6] Dechert, W.D. and Gencay, R. (2000). Is the Largest Lyapunov Exponent
Preserved in Embedded Dynamics? Physics Letters A, 276, 59­64.

[7] Gencay, R. and Dechert, W.D. (1992). An Algorithm for the n Lyapunov
Exponents of an n­Dimensional Unknown Dynamical System. Physica D,
59, 142­157.

[8] Gencay, R. and Dechert, W.D. (1996). The Identi…cation of Spurious Lya­
punov Exponents in Jacobian Algorithms. Studies in Nonlinear Dynamics
and Econometrics, 1 (3) article 2.

[9] Guckenheimer, J. and Holmes, P. (1983). Nonlinear Oscillations, Dynam­
ical Systems, and Bifurcations of Vector Fields. (Applied Mathematical
Sciences, Vol. 42), Springer­Verlag: Berlin.

[10] Hornik, K., Stinchcombe, M. and White, H. (1990). Universal Approxima­
tion of an Unknown Mapping and its Derivatives using Multilayer Feedfor­
ward Networks. Neural Networks, 3, 551­560.

[11] Koop, G., Pesaran, M.H. and Potter, S.M. (1996). Impulse Response Analy­
sis in Nonlinear Multivariate Models. Journal of Econometrics, 74, 119­147.

[12] Kuan, C.­M. and Liu, T. (1995). Forecasting Exchange Rates Using Feed­
forward and Recurrent Neural Networks. Journal of Applied Econometrics,
10, 347­364.

[13] McCa¤rey, D., Ellner, S., Gallant, A.R. and Nychka, D. (1992). Estimating
the Lyapunov Exponent of a Chaotic System with Nonparametric Regres­
sion. Journal of the American Statistical Association, 87, 682­695.

8



[14] Nychka, D., Ellner, S., Gallant, A.R. and McCa¤rey, D. (1992). Finding
Chaos in Noisy Systems. Journal of the Royal Statistical Society B, 54,
399­426.

[15] Potter, S.M. (2000). Nonlinear Impulse Response Functions. Journal of
Economic Dynamics and Control, 24, 1425­1446.

[16] Shintani, M. and Linton, O. (2004). Nonparametric Neural Network Esti­
mation of Lyapunov Exponents and a Direct Test for Chaos. Journal of
Econometrics, 120, 1­33.

[17] Takens, F. (1981). Detecting Strange Attractors in Turbulence. In Dynam­
ical Systems and Turbulence (Lecture Notes in Mathematics, Vol. 898) by
Rand, D.A. and Young, L.S., eds., Springer­Verlag: Berlin, 366­381.

9



Tables

Country Date for a¢liation
Norway January 1, 1993
Sweden January 1, 1996
Finland December 29, 1997
Western Denmark July 1, 1999
Eastern Denmark October 1, 2000

Table 1: The dates in the integration process in the power market.

Countries t statistic Signi…cance
Norway ­0.70 No
Norway and Sweden ­0.44 No
Norway, Sweden and Finland ­1.30 No
Norway, Sweden, Finland and Western Denmark ­0.36 No
Norway, Sweden, Finland and Denmark ­1.19 No

Table 2a: The Dickey­Fuller unit root test for the system price at Nord Pool.

Countries t statistic Signi…cance
Norway ­10.67 1 per cent
Norway and Sweden ­9.59 1 per cent
Norway, Sweden and Finland ­8.67 1 per cent
Norway, Sweden, Finland and Western Denmark ­6.13 1 per cent
Norway, Sweden, Finland and Denmark ­15.66 1 per cent

Table 2b: The Dickey­Fuller unit root test for the logarithmic­di¤erence of the
system price at Nord Pool.
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LE Newey­West SE Parzen SE Quad. Spect. SE
¸1 ­0.0606 0.00452 0.00473 0.00444
¸2 ­0.0743 0.00442 0.00447 0.00437
¸3 ­0.130 0.00661 0.00664 0.00660
¸4 ­0.160 0.00651 0.00652 0.00650
¸5 ­0.169 0.00709 0.00708 0.00709
¸6 ­0.199 0.00811 0.00811 0.00812
¸7 ­0.211 0.00872 0.00869 0.00882
¸8 ­0.231 0.00847 0.00837 0.00865
¸9 ­0.253 0.00928 0.00941 0.00968
¸10 ­0.286 0.0112 0.0110 0.0114
¸11 ­0.367 0.0146 0.0145 0.0148
¸12 ­1.07 0.0355 0.0360 0.0336

Table 3a: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period January 1, 1993, to December 31, 1995, i.e., when only Nor­
way participates in the power market. The Lyapunov exponents are estimated
for 12 inputs and 5 hidden units in the neural network when SIC is minimized,
and the number of signi…cant …gures is 3.

LE Newey­West SE Parzen SE Quad. Spect. SE
¸1 ­0.0623 0.00776 0.00782 0.00787
¸2 ­0.116 0.00840 0.00844 0.00858
¸3 ­0.148 0.0110 0.0109 0.0111
¸4 ­0.183 0.0109 0.0109 0.0109
¸5 ­0.235 0.0130 0.0129 0.0131
¸6 ­0.291 0.0151 0.0149 0.0153
¸7 ­0.423 0.0177 0.0172 0.0178
¸8 ­1.41 0.0265 0.0312 0.0331

Table 3b: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period January 1, 1996, to December 28, 1997, i.e., when only
Norway and Sweden participate in the power market. The Lyapunov exponents
are estimated for 8 inputs and 2 hidden units in the neural network when SIC
is minimized, and the number of signi…cant …gures is 3.
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LE Newey­West SE Parzen SE Quad. Spect. SE
¸1 ­0.0421 0.00740 0.00753 0.00685
¸2 ­0.0588 0.00821 0.00840 0.00731
¸3 ­0.0994 0.00495 0.00533 0.00556
¸4 ­0.107 0.00508 0.00558 0.00585
¸5 ­0.124 0.00750 0.00741 0.00732
¸6 ­0.135 0.00778 0.00807 0.00816
¸7 ­0.145 0.00790 0.00789 0.00791
¸8 ­0.166 0.00850 0.00850 0.00849
¸9 ­0.267 0.0135 0.0132 0.0141
¸10 ­0.284 0.00935 0.0117 0.0133
¸11 ­0.290 0.00978 0.0132 0.0145
¸12 ­0.296 0.0139 0.0139 0.0140

Table 3c: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period December 29, 1997, to June 30, 1999, i.e., when only Norway,
Sweden and Finland participate in the power market. The Lyapunov exponents
are estimated for 12 inputs and 3 hidden units in the neural network when SIC
is minimized, and the number of signi…cant …gures is 3.

LE Newey­West SE Parzen SE Quad. Spect. SE
¸1 ­0.0664 0.00134 0.00321 0.00376
¸2 ­0.0677 0.00172 0.00323 0.00378
¸3 ­0.0988 0.00609 0.00539 0.00531
¸4 ­0.102 0.00682 0.00582 0.00573
¸5 ­0.171 NA NA NA
¸6 ­0.174 NA NA NA
¸7 ­0.281 0.00283 0.00393 0.00418
¸8 ­1.23 0.00480 0.00645 0.00707

Table 3d: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period July 1, 1999, to September 30, 2000, i.e., when only Norway,
Sweden, Finland and Western Denmark participate in the power market. The
Lyapunov exponents are estimated for 8 inputs and 1 hidden unit in the neural
network when SIC is minimized, and the number of signi…cant …gures is 3.
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LE Newey­West SE Parzen SE Quad. Spect. SE
¸1 ­0.0319 0.00568 0.00525 0.00504
¸2 ­0.101 0.00426 0.00420 0.00431
¸3 ­0.125 0.00439 0.00439 0.00460
¸4 ­0.157 0.00517 0.00512 0.00520
¸5 ­0.176 0.00580 0.00580 0.00581
¸6 ­0.277 0.00707 0.00707 0.00706
¸7 ­0.323 0.00901 0.00898 0.00903
¸8 ­1.01 0.0169 0.0166 0.0190

Table 3e: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period October 1, 2000, to December 31, 2005, i.e., when Norway,
Sweden, Finland and Denmark participate in the power market. The Lyapunov
exponents are estimated for 8 inputs and 5 hidden units in the neural network
when SIC is minimized, and the number of signi…cant …gures is 3.

LE Newey­West SE Parzen SE Quad. Spect. SE
¸1 ­0.0806 0.00410 0.00408 0.00398
¸2 ­0.0855 0.00435 0.00432 0.00432
¸3 ­0.118 0.00545 0.00544 0.00541
¸4 ­0.134 0.00521 0.00515 0.00550
¸5 ­0.176 0.00653 0.00648 0.00667
¸6 ­0.201 0.00715 0.00704 0.00719
¸7 ­0.213 0.00789 0.00783 0.00793
¸8 ­0.237 0.00875 0.00860 0.00878
¸9 ­0.284 0.00956 0.00943 0.00961
¸10 ­0.330 0.00937 0.00982 0.0105
¸11 ­0.400 0.0115 0.0121 0.0124
¸12 ­1.86 0.0710 0.0675 0.0535

Table 4a: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period January 1, 1993, to December 31, 1995, i.e., when only Nor­
way participates in the power market. The Lyapunov exponents are estimated
for 12 inputs and 4 hidden units in the neural network when SIC is minimized,
and the number of signi…cant …gures is 3.
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LE Newey­West SE Parzen SE Quad. Spect. SE
¸1 ­0.0623 0.00776 0.00782 0.00787
¸2 ­0.116 0.00840 0.00844 0.00858
¸3 ­0.148 0.0110 0.0109 0.0111
¸4 ­0.183 0.0109 0.0109 0.0109
¸5 ­0.235 0.0130 0.0129 0.0131
¸6 ­0.291 0.0151 0.0149 0.0153
¸7 ­0.423 0.0177 0.0172 0.0178
¸8 ­1.41 0.0265 0.0312 0.0331

Table 4b: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period January 1, 1996, to December 28, 1997, i.e., when only
Norway and Sweden participate in the power market. The Lyapunov exponents
are estimated for 8 inputs and 2 hidden units in the neural network when SIC
is minimized, and the number of signi…cant …gures is 3.

LE Newey­West SE Parzen SE Quad. Spect. SE
¸1 ­0.0215 0.00554 0.00548 0.00551
¸2 ­0.0482 0.00594 0.00600 0.00594
¸3 ­0.0734 0.00663 0.00665 0.00665
¸4 ­0.0940 0.00650 0.00650 0.00663
¸5 ­0.100 0.00769 0.00769 0.00769
¸6 ­0.124 0.00724 0.00717 0.00743
¸7 ­0.143 0.00875 0.00875 0.00918
¸8 ­0.148 0.00931 0.00925 0.00944
¸9 ­0.175 0.0102 0.0102 0.0103
¸10 ­0.206 0.0132 0.0132 0.0134
¸11 ­0.319 0.0182 0.0185 0.0188
¸12 ­0.506 0.0318 0.0329 0.0278

Table 4c: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period December 29, 1997, to June 30, 1999, i.e., when only Norway,
Sweden and Finland participate in the power market. The Lyapunov exponents
are estimated for 12 inputs and 3 hidden units in the neural network when SIC
is minimized, and the number of signi…cant …gures is 3.
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LE Newey­West SE Parzen SE Quad. Spect. SE
¸1 0.0670 0.0169 0.0167 0.0168
¸2 ­0.0193 0.00852 0.00862 0.00843
¸3 ­0.0451 0.00762 0.00769 0.00761
¸4 ­0.0757 0.00811 0.00806 0.00822
¸5 ­0.130 0.0113 0.0114 0.0113
¸6 ­0.148 0.0118 0.0117 0.0119
¸7 ­0.271 0.0195 0.0196 0.0197
¸8 ­1.12 0.0576 0.0589 0.0562

Table 4d: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period July 1, 1999, to September 30, 2000, i.e., when only Norway,
Sweden, Finland and Western Denmark participate in the power market. The
Lyapunov exponents are estimated for 8 inputs and 5 hidden units in the neural
network when SIC is minimized, and the number of signi…cant …gures is 3.

LE Newey­West SE Parzen SE Quad. Spect. SE
¸1 ­0.0386 0.00294 0.00286 0.00306
¸2 ­0.0775 0.00336 0.00336 0.00336
¸3 ­0.119 0.00400 0.00395 0.00405
¸4 ­0.131 0.00413 0.00408 0.00420
¸5 ­0.147 0.00468 0.00460 0.00473
¸6 ­0.170 0.00534 0.00532 0.00537
¸7 ­0.196 0.00621 0.00617 0.00625
¸8 ­0.263 0.00679 0.00689 0.00706
¸9 ­0.300 0.00768 0.00781 0.00788
¸10 ­0.344 0.00863 0.00878 0.00913
¸11 ­0.471 0.0108 0.0113 0.0115
¸12 ­0.593 0.0165 0.0164 0.0160

Table 4e: Estimates of the Lyapunov exponents (LE) and the standard errors
(SE) for the period October 1, 2000, to December 31, 2005, i.e., when Norway,
Sweden, Finland and Denmark participate in the power market. The Lyapunov
exponents are estimated for 12 inputs and 4 hidden units in the neural network
when SIC is minimized, and the number of signi…cant …gures is 3.
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