Master Syllabus Department of Physics and Astronomy ## **APHY 316 Medical Physics II** ## **Course Description** Signal analysis, images (Radiography, Fluoroscopy, CT, Ultrasound, PET), biomagnetism, x-rays, nuclear medicine, magnetic resonance imaging, Biomedical Optics. (3 credit hours) Prerequisite: PHYC 260 and APHY 315. ## **Course Objective** The objective of this course is to provide a deeper understanding of how physics plays a major role in medical/biological fields and provide practice in working out specific examples using medical physics concepts. This course will help the student to understand the concepts of medical physics; to develop a solid background to allow the student a more knowledgeable reading of current research and background to attack problems in the workplace. ## **Course Rationale** This medical physics course is designed for the undergraduate of the biological and physical sciences, in particular those with a major or minor in the area of medical physics, bio-nanotechnology, biology, physiology and who have a sufficient mathematical and biological maturity to meet the necessary prerequisites, This course would be an excellent course for premedical, bio-nanotechnology and medical physics students. ## Course Content, Format, and Bibliography #### Content ## Signal analysis New Techniques Noise reduction Fourier Series and integrals Correlation functions Power spectrum Frequency Spectrum EEG, MEG, etc... #### **Images** Radiometry Forming images The relationship between the objects and images Image reconstruction from projections Master Syllabus: APHY 316 Computed Tomography Ultrasound ## Biomagnetism Magnetic fields from nerves Magnetic materials and biological systems Detection of weak magnetic fields Magnetic stimulation The magnetocardiogram ## X-rays Production of X-rays Radiation interactions The diagnostic radiograph Image quality biological effects of radiation The Risk of radiation Fluoroscopy ## Nuclear medicine Nuclear decay: decay rate and half-life etc... Gamma decay Beta decay Radioactive absorption within the body Detectors (Gamma Camera) **PET** **SPECT** #### Magnetic resonance imaging Magnetic moments in an external magnetic field The magnetization Behavior of the magnetization vector Relaxation times Detecting the signal ## Optics of the Eye Photometry Optical representation and functions of the eye Vision correction with external lenses Laser surgery of the eye ## **Format** Course activities will center on the lectures and assigned problems. It will be expected that the student will study several references during the course. The computer-generated animations are used to introduce, motivate, and illustrate the concepts of medical physics. This course is taught as a dual undergraduate/graduate course. Students will be required to complete activities appropriate for the level of the course in which they are enrolled. Student performance on homework, exams and/or labs will be evaluated using different standards for undergraduate and graduate students. Lectures and problem solving. ## **Bibliography** Physics of Diagnostic Imaging, David J. Dowsett Intermediate Physics for Medicine and Biology, 3rd edition, Russell K. Hobbie Bioelectricity, A Quantitative Approach, 2nd edition, Robert Plonsey and Roger Barr Introduction to Optics, 3rd Edition, Chapter 19, F. L. Pedrotti Electricity and Magnetism in Biological Systems, D. T. Edmonds The essential Physics of Medical Imaging, Jerrold T. Bushberg