# Master Syllabus Department of Physics and Astronomy



## **APHY 316 Medical Physics II**

## **Course Description**

Signal analysis, images (Radiography, Fluoroscopy, CT, Ultrasound, PET), biomagnetism, x-rays, nuclear medicine, magnetic resonance imaging, Biomedical Optics. (3 credit hours)

Prerequisite: PHYC 260 and APHY 315.

## **Course Objective**

The objective of this course is to provide a deeper understanding of how physics plays a major role in medical/biological fields and provide practice in working out specific examples using medical physics concepts. This course will help the student to understand the concepts of medical physics; to develop a solid background to allow the student a more knowledgeable reading of current research and background to attack problems in the workplace.

## **Course Rationale**

This medical physics course is designed for the undergraduate of the biological and physical sciences, in particular those with a major or minor in the area of medical physics, bio-nanotechnology, biology, physiology and who have a sufficient mathematical and biological maturity to meet the necessary prerequisites, This course would be an excellent course for premedical, bio-nanotechnology and medical physics students.

## Course Content, Format, and Bibliography

#### Content

## Signal analysis

New Techniques

Noise reduction

Fourier Series and integrals

Correlation functions

Power spectrum

Frequency Spectrum

EEG, MEG, etc...

#### **Images**

Radiometry

Forming images

The relationship between the objects and images

Image reconstruction from projections

Master Syllabus: APHY 316

Computed Tomography

Ultrasound

## Biomagnetism

Magnetic fields from nerves

Magnetic materials and biological systems

Detection of weak magnetic fields

Magnetic stimulation

The magnetocardiogram

## X-rays

Production of X-rays

Radiation interactions

The diagnostic radiograph

Image quality

biological effects of radiation

The Risk of radiation

Fluoroscopy

## Nuclear medicine

Nuclear decay: decay rate and half-life etc...

Gamma decay

Beta decay

Radioactive absorption within the body

Detectors (Gamma Camera)

**PET** 

**SPECT** 

#### Magnetic resonance imaging

Magnetic moments in an external magnetic field

The magnetization

Behavior of the magnetization vector

Relaxation times

Detecting the signal

## Optics of the Eye

Photometry

Optical representation and functions of the eye

Vision correction with external lenses

Laser surgery of the eye

## **Format**

Course activities will center on the lectures and assigned problems. It will be expected that the student will study several references during the course. The computer-generated animations are used to introduce, motivate, and illustrate the concepts of medical physics.

This course is taught as a dual undergraduate/graduate course. Students will be required to complete activities appropriate for the level of the course in which they are enrolled. Student performance on homework, exams and/or labs will be evaluated using different standards for undergraduate and graduate students.

Lectures and problem solving.

## **Bibliography**

Physics of Diagnostic Imaging, David J. Dowsett

Intermediate Physics for Medicine and Biology, 3<sup>rd</sup> edition, Russell K. Hobbie

Bioelectricity, A Quantitative Approach, 2<sup>nd</sup> edition, Robert Plonsey and Roger Barr

Introduction to Optics, 3<sup>rd</sup> Edition, Chapter 19, F. L. Pedrotti

Electricity and Magnetism in Biological Systems, D. T. Edmonds

The essential Physics of Medical Imaging, Jerrold T. Bushberg