"MPG Equivalent Economy Labels for New Electric Vehicles,"

Ronald Cosby
Paul Errington
David Ober
Department of Physics and Astronomy
Ball State University

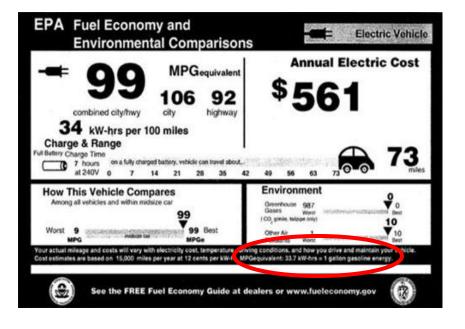
Outline

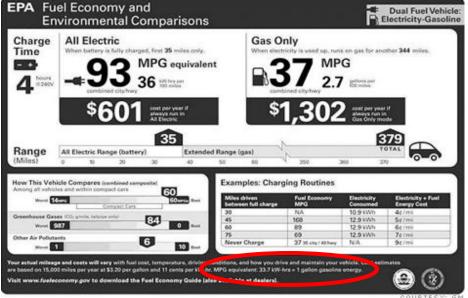
- 1. Fuel economy ratings for 2011 Nissan Leaf (electric) and Chevy Volt (hybrid)
- 2. Assumptions and calculation of MPGe on EPA stickers
- 3. Example EPA charging routines for 5 Chevy Volt trips: Cost per mile and MPGe comparisons
- 4. EV investment returns when compared to other hybrid and gasoline powered cars
- 5. Suggested physics student classroom presentations and/or laboratory activities

Manufacturer's mpg ratings released on August 11, 2009

GM Announces that Chevy Volt to get 230 mpg rating

Nissan's Leaf Claims 367 mpg and Pokes Fun at Chevy Volt





EPA ratings and stickers released in November of 2010

Nissan Leaf First EV to Get EPA Rating

Two Days Later Chevy Volt Label Released and Explained

EPA's **Assumption** for Calculation of MPGe:

"33.7 kW-hrs **Equivalent** to One Gallon of Gasoline Energy"

(or 115,000 Btu = 115,000 Btu)

Charge and Range for Nissan Leaf 34 kW-hrs per 100 miles

Charge and Range for Chevy Volt 36.4 kW-hrs per 100 miles

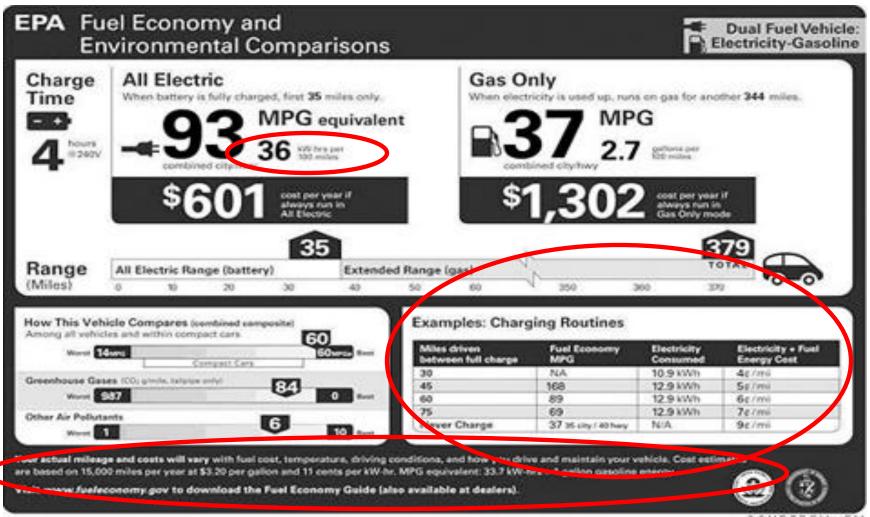
EPA Formula for Nissan Leaf

EPA Formula (Chevy Volt)

100 miles 33.7 kWh
----- x -----34.0 kWh 1 gallon gas

100 miles 33.7 kWh

1 gallon gas


= 99 MPGe

= 93 MPGe

36.4 kWh

....and now the fine print details....

First, a 36-kWh charge is required for 100 miles for Chevy Volt

The Fine Print and Five Charging Routine Examples

Cost estimates are based on \$3.20 per gallon gasoline and 11 cents per kW-hr.

Let's compute the easy miles driven, MPG, and costs per mile:

Electric case: 30 mi x $\frac{36.4}{100}$ kWh/100 mi = 10.9 kWh

Cost becomes 10.9 kWh x 0.11/kWh = 1.20 per 30 mi (or 4 ¢ / mi)

Miles driven between full charge	Fuel Economy MPG	Electricity Consumed	Electricity + Fuel Energy Cost
30	NA C	10.9 kWh	4 ¢ / mi
45			
60			
75			
Never Charge	37 35 city/40 hwy	NA	9 ¢ / mi

(Never Charge is \$3.20/gallon gasoline case; \$3.20/37 mi = 9 ¢ / mi case

How does one obtain 69 MPG on a **75-mile** trip?

Assume regular "on board" gas mileage method: MPG = miles driven/gallons used

First compute electric battery miles driven:

12.9 kWh x 100 mi/36.4 kWh \longrightarrow 35.4 mi driven on battery (and 39.6 mi on gas)

39.6 mi driven @ 37 MPG implies \longrightarrow 39.6 mi/37 MPG = 1.07 gallon gas used

1.07 gallon used for 75-mi trip → MPG = 75 mi/1.07 gallor ≈ 69 MPG

Miles driven between full charge	Fuel Economy MPG		Electricity + Fuel Energy Cost
75	69	12.9 kWh	7 ¢ / mi
Never Charge	37 35 city/40 hwy	NA	9¢/mi

Electricity + Fuel Energy Cost:

 $(1.07 \text{ gallon x } \$3.20/\text{gallon} + 11 \text{ ¢/kWh x } 12.9 \text{ kWh})/75 \text{ mi } = (\$3.42 + \$1.42)/75 \text{ mi } \approx 7 \text{ ¢ / mi}$

Similar MPG calculations for trips of 60 and 45 mi (and even 44, 43, 42, 41, and 40 mi)

Miles driven between full charge	Fuel Economy MPG	Electricity Consumed	Electricity + Fuel Energy Cost
60	89	12.9 kWh	6¢/mi
45	168	12.9 kWh	5 ¢ / mi
44	<u>190</u>	12.9 kWh	4.9 ¢ / mi
43	<u>210</u>	12.9 kWh	4.8 ¢ / mi
42	<u>237</u>	12.9 kWh	4.7 ¢ / mi
41	<u>273</u>	12.9 kWh	4.6 ¢ / mi
40	<u>325</u>	12.9 kWh	4.5 ¢ / mi
30	(really BIG!)	10.9 kWh	4 ¢ / mi

Power Plant Implications in the Assumption used in EPA's Formula

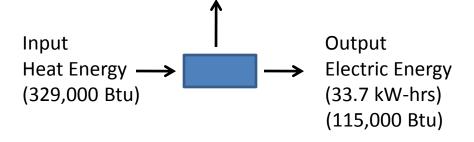
2010 EPA Power Plant for Electric Vehicles

US Power Plant in 2010 for Electric Vehicles at 35% Efficiency

33.7 kW-hrs **Equivalent** to One Gallon of Gasoline

Input

Heat Energy


(115,000 Btu)

Output

Electric Energy

(33.7 kW-hrs)

214,000 Btu Heat Energy Rejected to Low Temperature Reservoir

Revised MPGe for 35% Efficient Electric Power Plant:

"33.7 kW-hrs **Equivalent** to One Gallon of Gasoline Energy" however, 329,000 Btu thermal required for 115,000 Btu electrical

Charge and Range for Nissan Leaf 34 kW-hrs per 100 miles Charge and Range for Chevy Volt 36.4 kW-hrs per 100 miles

EPA Formula for Nissan Leaf

EPA Formula (Chevy Volt)

100 miles 33.7 kWh
----- x -----34.0 kWh 2.7 gallon gas

100 miles 33.7 kWh
----- x -----36.4 kWh 2.7 gallon gas

= <u>35</u> MPGe

= <u>33</u> MPGe

<u>Investment return</u>: Miles driven needed to recover difference in base cost of Chevy Volt – less \$7,500 plug-in hybrid tax credit

Vehicle	Туре	Base MSRP	Curb Wt	Combined MPG	Electricity + Fuel Cost	Miles driven to recover initial cost difference
Nissan Leaf	Electric	\$32,780	3366	99	3.7 ¢/mi	
Chevy Volt	Electric	\$40,280	3781	93	4.0 ¢/mi	
Toyota Prius	Hybrid	\$23,050	3042	50	6.4 ¢/mi	405,000
Honda Civic	Hybrid	\$23,950	2877	41	7.8 ¢/mi	232,000

<u>Investment return</u>: Miles driven needed to recover difference in base cost of Chevy Volt – less \$7,500 plug-in hybrid tax credit

Vehicle	Туре	Base MSRP	Curb Wt	Combined MPG	Electricity + Fuel Cost	Miles driven to recover initial cost difference
Nissan Leaf	Electric	\$32,780	3366	99	3.7 ¢/mi	
Chevy Volt	Electric	\$40,280	3781	93	4.0 ¢/mi	
Chevy Volt	Gas	\$40,280	3781	37	8.6 ¢/mi	NA
Smart Car	Gas	\$12,490	1808	36	8.9 ¢/mi	414,000
Hyundai Elantra	Gas	\$14,945	2661	33	9.7 ¢/mi	313,000
MINI Cooper	Gas	\$21,100	2789	31	10.3 ¢/mi	185,000
Chevy Cruze	Gas	\$16,525	3102	30	10.7 ¢/mi	243,000
Ford Focus	Gas	\$16,640	2623	29	11.0 ¢/mi	231,000
Volkswagen Jetta	Gas	\$15,995	2881	28	11.4 ¢/mi	227,000
Honda Accord	Gas	\$21,180	3217	27	11.9 ¢/mi	147,000

Suggested physics student classroom projects, presentations, and/or laboratory activities

- 1. Calculations of MPGe that include upstream factors:
 - Fossil and nuclear power plant efficiencies
 - Alternative energy power source costs
 - Wellhead-to-refinery-to-consumer costs
 - Oil-related defense costs
- 2. Exponential (energy) growth Al Bartlett
- 3. US and world energy production/consumption
- 4. World energy resources by country
- 5. CO₂ emissions by sector and country
- 6. The future role of solar and wind energy in US economy
- 7. The role of government in changing societal behavior

Thank you

Question and Comments