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Introduction 
 
 
 

 1.1 Background 

  Pulsating stars have intrigued astronomers since the late 1500’s. The first star 

observed to brighten and dim periodically was o Ceti.  First observed by David Fabricius 

in 1595, the second-magnitude star eventually faded from view only to brighten back to 

its original magnitude.  By 1660, it was established that o Ceti dimmed and brightened 

according to an 11 month cycle.  This periodic cycle of dimming and brightening earned 

o Ceti the nickname Mira (wonderful).  Although the first attempts to explain the 

changes were erroneous, the dawn of variable star astronomy had nonetheless arrived.   

 Thousands of stars are now known to be variable, of which pulsation is only one 

mechanism.  The most famous class of these stars being the Cepheid variables.  Named 

for the first variable of this class found in 1784 by the young astronomer John 

Goodricke, δ Cephei, these stars change brightness on the order of days rather than 

months. Their brightness typically changes on the order of a magnitude or more, thus 

they are often among the most detectable, even in galaxies beyond our Milky Way. 

Other classes of pulsating variables have been discovered and categorized over the 
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years. The most important parameters for classifying these objects are period, change in 

magnitude and position on the H-R diagram.   

 The δ Scuti class was one of the later types of pulsating variables to be found.  

Most of these stars display low-amplitude changes in brightness and short periods, on 

the order of hours although a subclass does exist where amplitudes can reach 0.30 

magnitude or larger.  These stars are generally still on or close to the main-sequence, 

crossing the instability strip.  Hence, their spectral range is between A through F types.  

The prototype of this class is Delta Scuti which was discovered to be variable near the 

turn of the 19th century.  Since its discovery, hundreds of stars have been included in 

this category. Rodriguez et al. (2000) published a comprehensive list of 636 variables, 

along with periods and amplitudes.  This class is also one of the fastest growing classes 

of variables. New CCD technology is allowing photometric detection of low-amplitude 

variability, and Breger estimates that between 1/2 and 1/3 of the stars at the main 

sequence/instability strip intersection show variability between 0.003 and 0.010 

magnitude (Breger 2000).  With the advent of photometric campaigns such as Kepler, 

this family should only continue to grow substantially over the next decades. 

 Another major class of variable stars is the eclipsing binary stars.  An appreciable 

percentage of the stars in our sky are among binary stars.  If the stars’ orbital plane lies 

in the line of sight with respect to observers from Earth, the stars will pass in front of 

each other twice in one orbital cycle. This is the famous eclipsing phenomenon.  One 

such eclipsing star, Algol, was first observed to change brightness in 1670.  An 



 

3 
 

explanation for the variation was to wait for over a century. Again, the young John 

Goodricke observed the magnitude changes and in 1782 hypothesized a second body 

passing in front of the brighter component.   

  There exists a subclass of binaries of which the individual components are not 

resolvable. These belong to a group called close binaries. Many of the components of 

these systems are separated by small orders of the sum of the stellar radii, generally 20 

or less (Hilditch 2001, pg 1).  These short distances also lead to short periods, on the 

order of tens of days or less.  All of the binaries in this thesis fall within these ranges of 

separation and period. 

 Binary stars are important and eclipsing binaries even more so.  Using 

spectroscopic techniques, the ratio of the velocities and thus the mass ratio can be 

obtained.  Because the eclipsing phenomenon can be observed photometrically and the 

angle of inclination is known to a much greater certainty, other parameters such as 

individual masses, individual radii, and the ratio of their effective temperatures can be 

ascertained when both spectroscopic and photometric data are combined.  Other 

orbital and component parameters able to be determined are the eccentricity of the 

orbit and an approximation of the percentage of the Roche Lobe filled for each 

component.   

1.2 Pulsating Stars in Close Eclipsing Binary Systems 

  The investigation of pulsating variables in close eclipsing binary systems is a 

relatively new area of study.  The first δ Scuti-type pulsating variables in eclipsing  
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systems were found during the 1970’s with papers published throughout the decade.  

AB Cas was discovered to have pulsation in 1971 (Tempesti 1971), followed by Y Cam in 

1974 (Broglia & Marin 1974).  RS Cha and AI Hya were the last two of that decade 

(McInally & Austin 1977; Jøergensen & Grønbech 1978).  The list grew slowly, reaching 

25 by 2006 (Soydugan et al. 2006b).  Most of these systems are classified as Algol-type 

eclipsing systems. This led Mkrtichian to introduce the term oscillating Eclipsing Algols 

(the term oEA used hereafter; Mkrtichian 2004).  The number of systems used in this 

thesis is close to 40. Objects were taken from a paper in which 20 systems were 

collected and analyzed (Soydugan 2006a) as well as publications reporting δ Scuti-type 

behavior in eclipsing Algol systems since 2006.   

1.3 Effects of Binarity on Pulsation 

 A possible relationship between the orbital and pulsational periods was found by 

Soydugan et al. (2006a).  For their study orbital periods and pulsation periods were 

gathered from the literature for each system, along with other relevant orbital 

parameters such as mass and stellar radius.  Using this information they generated a 

plot of the pulsation period vs. orbital period. This plot is replicated in Figure 1.  They 

also investigated if a correlation exists between the force of the non-pulsating 

component on the pulsator and the pulsation period.  However, only eight systems had 

enough relevant data published in the literature to perform the analysis. Even with a 

small sample, the authors claimed sufficient evidence of a correlation.   

 In the course of doing undergraduate research on exoplanets, Dr. Ronald 

Kaitchuck and I discovered a δ Scuti star near DF Peg while performing differential 
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Figure 1.  Pulsation period in days as a function of orbital period in days for 20 close binary systems. 

photometry.  That discovery prompted an interest in pulsating stars, during the study of 

which a paper exploring orbital parameters and pulsation behavior on 4 systems was 

found (Tsvetkov & Petrova, 1993).  In the paper the idea of a resonance between the 

orbital and pulsation period was mentioned.  Investigating this concept further led to 

both the Soydugan et al. papers (2006a; 2006b; herein referred to as [1] and [2] 

respectively).  The first of these papers put forth the possible relationships between the 

orbital and pulsation periods and the force/pulsation correlation mentioned above.  The 

second introduced a catalogue of close eclipsing binary systems in which at least one  

component fit the δ Scuti profile in terms of spectral type and mass.  From these papers  

this master’s thesis developed.  It was the purpose of this project to observe targets 

from the catalogue and gather data from the literature in an attempt to further 

establish if binarity affects the pulsational behavior.  
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2. Stellar Dynamics 
 
 
 

 In this section some basic astrophysical principles are presented.  Section 2.1 will focus 

on the dynamics of binary systems.  Binary geometry, potential and Roche structure will be 

examined.  In section 2.2 stellar pulsation will be considered along with the generalities of δ 

Scuti stars.  While most of the information contained in this section is well-known, it is given 

here for the context of content in chapters 3 and 4, where observations of pulsating stars are 

presented and relationships between binarity and pulsation are obtained, respectively. 

2.1 The Dynamics of Close Binary Systems 

 The first task is to formally define what is meant by a close binary system.  R.W. Hilditch 

asserts we should interchange the term close with interacting to suggest that a close binary 

system is one in which the two stars are close enough to have their evolution affected by the 

presence of the companion (Hilditch 2001; pg. 2).  Typically in the literature close implies the 

separation is on the order of tens of solar radii or less.  For the purposes of this study, close fits 

both of these definitions.  Of all the systems analyzed, the one with the longest orbital period is 

FO Ori with 18.8 days.  Using Kepler’s Third Law in the form 
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π
                                                             (2.1) 

where P is the orbital period, G is Newton’s gravitational constant, M1 and M2 are the masses 

of the respective components of the binary, and a is the semi-major axis.  For this study M1 and  

M2 will be denoted as Mp and Ms for primary and secondary (while the majority of pulsators 

included herein are considered the primary component; higher temperature and usually more  

massive, this is not exclusively the case).  This leads to a separation for FO Ori of about 46 solar 

radii.  This result is within tens of solar radii and hence within the assumptions of much of the 

literature.   

 To describe any system in a classical manner, three variables are needed: distance, 

mass, and time.  It is typical in the literature of binary systems to report masses and distance in 

units of solar masses and solar radii, respectively.  In the area of pulsating variables, periods are 

often reported in terms of days or in frequencies of c/d, or cycles per day.  These are the units 

of mass, distance and time that will be utilized throughout the rest of this paper.  To this end, in 

all calculations, the value for G used is given as 2943.7 2

3

dayM
R

Sun

Sun
(see appendix for the 

calculation of the conversion).   

2.1.1 Center of Mass and Potential  

 

 

 

 

 

Y 

X 

r2 r1 

M1 

CM 

M2 

Figure 2.  A Binary system with components M1 and M2. The Center of Mass (CM) is at the origin.  r1 
and r2 denote the distance from each component to the CM. 
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 Figure 2.1 shows two stars, designated as M1 and M2 situated distances r1 and r2 

respectively from the center of mass (the relative sizes of M1 and M2 are to indicate mass; it is 

common for the more massive star to have the smaller radius).  The center of mass is shown at 

the origin of the x-y plane. Using the magnitudes of r1 and r2 with the equation of an ellipse it 

can be shown that binary stars have the following property: 

1

2

2

1

r
r

M
M

=                                                                      (2.2). 

The r1 and r2 vectors are defined as the distance from the center of the star to the center of 

mass, thus the sum of the vectors provide the distance between the centers of both stars, or 

the semi-major axis of the system.  Having defined the center of mass and the distance vectors, 

it is possible to now describe the gravitational potential. 

 Figure 2.2 shows a test mass ‘m’ a distance r away from the center of mass of the 

system.  The gravitational potential energy of a particle of mass ‘m’ a distance s from a body of 

mass M is given by the well-known equation 

s
MmGU −=                                                                    (2.3). 

If a second body of mass M2 is added, the potential energy can be found by superposition of the 

two bodies.  Because the coordinate system in Figure 2.1 is a corotating frame of reference 

(objects fixed with respect to the center of mass), we also must include a centrifugal term: 

22

2
1 rmU c ω−=                                                               (2.4). 

Marking each mass with subscripts to differentiate between them and adding the centrifugal 

term we arrive at the total potential of the system: 
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Figure 3. A corotating frame of reference showing a test mass ‘m’ . 
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If, finally, this result is divided through by the test mass m, the effective gravitational potential, 

Φ, is obtained.  The result is 

22

2

2

1

1

2
1)( r

s
M

s
M

G ω−+−=Φ                                                   (2.6). 

This result of the effective gravitational potential will also be used in Chapter 4 to investigate if 

the potential in a binary system affects the period of pulsation.   

  When the potential is analyzed, some important points in the x-y plane can be 

found. If we let the test mass rest on the x-axis and differentiate the potential, we find specific 

points where the derivative (the force) goes to zero. These are the Lagrangian points.  Of  

particular importance for binary stars is the L1 point.  This point lies directly between the two 

components and is the point at which mass will flow if and when mass transfer occurs.1   

2.1.2 Roche Structure 

 If the effective gravitational potential is calculated at a point in the x-y plane, the value 

1For a detailed discussion on the derivation of the effective gravitational potential, see chapter 18 of Carroll & 
Ostlie (2007). 
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belongs to a group of points of which all share that same value.  The surfaces these points make 
 

are called equipotential surfaces. Likewise, in three dimensions there exists a surface that 

encloses a volume and the points on the surface of this volume are also equipotentials.  Close 

to each individual star, these surfaces are nearly spherical.  Moving outward, they become less 

spherical and more tear-drop shaped.  The L1 Lagrangian point is where the tear-drop shapes 

for each star meet, also called the inner Lagrangian point.  The largest tear-drop shape for each 

star is called the Roche limit.  The Roche limit is the maximum volume a star can have and 

retain its own constituents under its own gravitational control.  This maximum volume is also 

referred to as the Roche lobe. 

 An important quantity involving the Roche lobe is called the effective radius.  The 

effective radius is the radius a sphere would have if it occupied the same volume as the Roche 

lobe.  Several have worked to develop approximations for this quantity; perhaps the most 

useful is that developed by Eggleton (1983) which is good to within 1% for all mass ratios.  This 

approximation depends on the mass ratio q (defined as M1/M2, or M2/M1 depending on which 

radius is being calculated).  The formula is given as: 

)1ln(69.0
49.0

3/13/2

3/2

qq
q

a
RL

++
=                                                                   (2.7) 

where q=M2/M1 is used to evaluate RL2 and reversed to evaluate RL1.  One more useful 

approximation involves finding the equatorial radius of the Roche lobe in the y-direction as  

seen from the positive z-axis looking down on the x-y plane.  This approximation was developed 

by Plavec & Kratochvil (1964) and is given as: 

2084.0378.0
)( −= q

a
eqRL                                                     (2.8) 
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where the q in this instance is for M2/M1. With this q-value the equation gives RL(eq) for M2 (let 

q = M1/M2 to obtain RL(eq) of M1).  This result will play an integral role in Chapter 4 when 

investigating the potential on the surface of the pulsator.  

 One important note should be made about the foregoing analysis; the orbits are 

assumed to be circular or at least at a very low eccentricity (which are assumed throughout the 

rest of the paper).  While this assumption may not be explicitly justified, numerous estimates 

place the time for circularization in systems with orbital periods of less than 8 days at about 106  

years, which is short enough that circularization should have taken place in most of the 

systems. Exceptions would obviously be the longer period systems, such as FO Ori and EY Ori.  

Results in Chapter 4, however, will give an argument for the circularization of at least FO Ori.2 

2.2 Stellar Pulsation 

 The variability in the light curves of pulsating stars is due to periodic departure from 

equilibrium.  Oscillations both deep inside the star and closer to the surface can cause 

departure from equilibrium that will, in turn, cause the luminosity changes detected in the light 

curves.  Pulsations can be divided into two groups.  Radial pulsations maintain the spherical  

symmetry of the star, while non-radial pulsations in general do not maintain the symmetry. 

 Until recently, relatively few stars have been observed to pulsate.  Carroll and Ostlie 

(2007, pg. 496) estimate that only one out of 105 stars show pulsation.  This ratio is likely to 

tend to unity as better detectors are produced and more precise photometric techniques are 

developed.  New photometric campaigns, such as Kepler, should be able to provide a better 

estimate of the true fraction of stars in the sky that pulsate at amplitudes currently  

2 See Hilditch (2001) for a detailed discussion on Roche structure and circularization in close binary systems. 
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photometrically detectable. One more reason why this ratio should increase is we now know 

what types of stars are likely to pulsate and which are not. 

 Pulsations are driven by ionization zones.  The main zones are the hydrogen partial 

ionization zone and the He II partial ionization zone.  The He partial ionization zone is deeper in 

the star than the Hydrogen; however they both move toward the surface as Teff increases.  A 

general description of the pulsation mechanism follows.  Stellar layers are subject to 

compression from perturbation.  The opacity of layers within a star are governed by Kramers 

law, which states that the opacity, κ, is given by 5.3−∝ Tρκ , where ρ and T are the density and 

temperature of the layer.  Typically, the opacity decreases upon compression (Carroll and 

Ostlie, pg. 496; Cox 1980, pg. 137).  However, for pulsations to occur, the opacity must increase 

so that some of the energy is damned up (otherwise energy leakage would not cause 

pulsational instability).  In the ionization zones, the condition for an increase in opacity upon 

compression is found. These layers experience a phenomenon called ‘temperature freezing’ 

(Huang & Yu 1998, pg. 486). During compression, the density increases and because the 

temperature is ‘frozen’ the opacity thus increases.  This allows energy in the layer to go into 

ionizing the atoms in these regions.  Expansion in these regions occurs when enough energy has 

been built up.  Once the layers expand they then release the heat and as the layer cools, the 

atoms recombine and the layer contracts to begin a new cycle.  This is known as the κ-

mechanism. 

2.2.1 Radial Pulsation 

 Radial pulsation is characterized by sound waves traveling in the stellar interior.  Simple 

models show radial pulsation periods are inversely proportional to the mean density of the star.  
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This is the well-known period-mean density relation.  This model says that lower-density stars 

have longer pulsation periods, while stars with higher densities have shorter periods.  Advanced 

models and observations also share this result.  The fundamental mode of radial pulsation can 

be thought of as a sound wave with a node at the center and an anti-node at the surface.  A 

simple linearized model for the fundamental period is given in Carroll and Ostlie (2007, pg. 502) 

as: 

)43(
3
4

2

0 −

=Π

γρπ

π

G
                                                           (2.9) 

where Π is the period, ρ0 is the mean density, and γ is the ratio of specific heats of the gas.  

Although this model was built on simplified assumptions, using the density of known Cepheid 

variables produces periods consistent with observations.  This model is also confirmed 

observationally in that it predicts stars with higher densities to have shorter periods, which is in 

fact what is observed. 

 Higher mode pulsations are modeled with one or more nodes between the center of the 

star and the surface. As the waves travel through more nodes, the shorter the pulsation period 

becomes.  Also, as more nodes are present, the amplitudes generally decrease.  Typically, only 

low-order radial pulsations are detectable with current photometric techniques.  In general, the 

majority of high amplitude and long-period variables pulsate radially; usually in either the 

fundamental mode or the first harmonic. 

 Another way to write the period-mean density relationship is to invoke the ‘pulsation 

constant’, Q.  In this form the relationship is given as Π ( SUNρρ / )1/2=Q.  This says that the 
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pulsation constant is equal to the period of the pulsating variable multiplied by the square root 

of the ratio of the mean densities of the variable and the sun, respectively. 

2.2.2 Nonradial Pulsation   

 Whereas radial pulsations conserve radial symmetry, some stars pulsate such that 

certain regions of the stellar surface expand while others contract.  As a result the spherical 

symmetry is broken.  Such stars are said to exhibit nonradial pulsation.   

 To describe nonradial pulsation, spherical harmonics are utilized.  The numbers ℓ and m 

are used to describe the surface of a sphere.  ℓ has non-negative values and m can be equal to 

any integer between the values of -ℓ and +ℓ.  ℓ represents the number of nodal circles, and 

there are |m| circles running through the poles, while ℓ - |m| circles run parallel to the 

equator.  If ℓ = 0 then m = 0 as well, and the pulsation is purely radial.  For a non-rotating star 

not gravitationally bound to a companion, description using spherical harmonics may prove to 

be difficult due to the lack of an identifiable pole.  However, in the case of pulsating variables in 

circular orbits with a companion, the axis of rotation defines the pole.   

 There are two main types of nonradial oscillations.  The first are called p modes; p 

standing for pressure.  Here pressure provides the restoring force for the waves traveling in the 

stellar interior.  The second type are called g modes.  Here internal gravity waves moving 

through the stellar interior provide the restoring force for the sound waves.   

2.2.3 Properties of δ Scuti Stars 

 Most of the oEA’s encountered in the literature are of the δ Scuti family.  These 

pulsating variables are found at the intersection of the instability strip and the main sequence 

on the H-R diagram.  Because almost all of them inhabit this area, they have a specific spectral 
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range between about F8 and A2 (Templeton 2010) although A5 is fairly hot (e.g. HD 208238 

which is an A5; Turner & Kaitchuck 2008).  Most δ Scuti stars pulsate nonradially, although a 

few pulsate in radial modes alone (Breger 2000).  Because of their spectral range and position 

on the H-R diagram, they have higher densities than larger amplitude variables such as classic  

Cepheids.  As a result their periods are significantly shorter.  The typical range for periods is  

between 0.02 and 0.25 days (or about half an hour to about 6 hours) (Breger 2000).  Several 

overviews of basic properties of δ Scuti stars are available, i.e. Templeton (2010), and Percy 

(2007).   A detailed description of the current state of δ Scuti stars is given by Breger (2000). 

 Because most δ Scuti stars exhibit nonradial pulsation, and oEA are typically δ Scuti 

stars, we can regard the pulsations analyzed in Chapter 4 as generally nonradial in nature. It is 

rather curious that to date nothing in the literature indicates the discovery of larger amplitude 

variables such as Cepheids or RR Lyrae stars in these close binary systems.  There may be a 

physical limitation to the development of these types of variables in close systems due to the 

proximity of the companion.  However, if they existed, it is plausible that they would be the first 

discovered due to their large variability.  This is not the case.  The rate at which small amplitude 

variables (and by extension variables in places such as close binary systems) is increasing due to 

such programs as HIPPARCOS, MACHO, and OGLE (Breger 2000).  With the dawn of the Kepler 

age, the rate of these discoveries should only accelerate.   

 

 

 

 



 
 

 
 

 

 

 

 

 

3. Observations 
 
 
 

3.1 Target List 

 All of the targets for this research project were taken from Soydugan et al. (2006b).  The 

targets were chosen based on factors such as magnitude, length of time available to observe 

the target, and position in the sky.  For this study 15 targets were chosen with possible 

pulsation detected in six of those targets (FO Ori was observed for a different research project 

but periodicity was detected once the data were analyzed).  This suggests photometrically 

detectable pulsation may be present in these systems on the order of 30-40 %.  This is in 

contrast to two other campaigns working from the same catalogue.  Two papers published in 

2009 reported successful detection of pulsation on the order of 10 % in these systems (Dvorak, 

2009; Liakos, 2009). Each study observed over 20 systems. This 10% success rate may be due to 

observational limits. Therefore many of the targets in the catalogue already published in the 

literature without detection of pulsation should be looked at again by observers with different 

equipment than those of the author(s).  X Tri was observed by Liakos et al. (2009) and 

pulsational variability was not found in their study. However, in taking data for this thesis, it 

was discovered to have pulsation.  As a result, observers should continue to observe systems 

for which no pulsation has been detected as pulsation may simply be below the detection 



 

17 
 

capabilities of the publishing author. Multiple observing campaigns are encouraged to confirm 

or deny detectable pulsations. 

 Three other interesting cases should be noted.  Observations of BG Peg had already 

been taken for purposes of this thesis before realizing it had already been published in the 

literature (Dvorak, 2009).  Because no significant difference between the published period and 

the period found in my data could be found, no further observations were taken and the results 

have been excluded from this analysis.  WY Leo, on the other hand, while published in the same 

study as BG Peg, was found to have significantly different periods.  As I only gathered one night 

of observations on WY Leo, compared to the 27 gathered by Dvorak, caution is encouraged 

before any claims of pulsation period changes in the system are made.  However, it may be 

worthwhile to gather more data on this system to determine if a period change has occurred or 

is still changing.  FO Ori was observed on 3 nights in January, 2010, for an un-related study and 

subsequent analysis showed pulsational behavior.  Therefore, although it is not in the 

catalogue, it was included in this study and as will be shown later, may be one of the more 

interesting data points for the purposes of this study. 

 All of the data taken for this thesis was done using differential photometry.  Because the 

typical star in the δ Scuti region on the HR diagram is of spectral type F0-A5, the best filters to 

use to detect pulsations are the B and V filters.  Some studies restrict their observations to the 

B filter alone.  This was not done for this study as the Ball State observatory is not optimized for 

observations in the B filter and many stars that might be used for comparison might be brighter 

in the V filter.  However, the R and I filters were excluded (pulsation amplitudes are filter-

dependent with the B and V filters providing the highest amplitudes).  Images were reduced 



 

18 
 

using the IRAF ccdred package, correcting for bias (underlying noise levels from the CCD), dark 

(thermal) and flat-field (pixel to pixel variations and impure optical) effects.  Differential 

photometry was performed with the AIP4Win software package. The results of which were 

used to generate the light curves using Microsoft Excel.  All light curves that indicated eclipse 

phenomena were fit with polynomials to flatten the data set before the period analysis was 

performed. It should be noted no attempt at pulsation mode identification has been made for 

the purposes of this thesis. Photometric errors were obtained in AIP4Win by performing a 

signal-to-noise calculation which included camera read noise, the gain of the camera, dark 

currents, and the sky background for the variable and comparison star(s).  These errors were 

then added in quadrature to obtain the error for each individual differential measurement. 

3.2 Summary of Observations 

 The observations for this project were taken between January of 2010 and December of 

2010.  The following sections relate the observations in detail.  The telescopic equipment and 

CCD cameras are given first.  The list of targets with all relevant observational data is also 

presented.  Finally the results for positive possible pulsation detection are given. 

3.2.1 Telescopes and Equipment 

 Data were collected with 4 different telescopes. The Ball State University Observatory 

houses two of the instruments. These include 0.4-m and 0.3-m diameter telescopes. Ball State 

is also part of the Southeastern Association for Research in Astronomy which operates a 0.9-m 

telescope at Kitt Peak National Observatory and a 0.6-m telescope at Cerro Tololo in Chile.  The 

SARA telescopes are of the Cassegrain design, while the BSU scopes are Schmidt-Cassegrains.

 The 0.4-m telescope at Ball State University is a Mead LX 200 with an SBIG ST-10 CCD 
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camera attached.  The telescope has a focal ratio of f/6 and a plate scale of 0.58 arc sec per 

pixel.  The 0.3-m telescope is a Celestron with an SBIG STL-6303 CCD camera.  This telescope is 

at an f/11 ratio, giving a plate scale of 0.47 arc sec/ pixel.  The 0.9-m telescope at KPNO has an 

Apogee U42 CCD camera with an f/7.5 ratio, giving a plate scale of 0.4 arc sec/ pixel.  The  

telescope at CTIO is equipped with an Apogee Alta CCD camera at a focal ratio of f/13.5 giving a 

plate scale of 0.6 arc sec/pixel.   

3.2.2 Observing Programs 

 Table 1 describes the observing program for each star.  Included are the comparison 

stars chosen, UT and Julian Dates for each observation session, which telescope was used, and 

the number of images taken in each filter.  Coordinates for each were obtained from the 

SIMBAD database when possible.  In all other cases coordinates were obtained from The SKY 6 

(Bisque Software, Inc. 2004).  The Julian dates given are heliocentric-corrected dates for each 

night of observations.   

 Once generated each light curve was processed with the PERANSO (Vanmunster 2007) 

period analysis software package for periodic behavior on δ Scuti time scales using the Lomb-

Scargle method (Lomb 1976; Scargle 1982). Each data set was period-searched between 0.01 

and 0.3 days, which encompasses the accepted range of periods found in δ Scuti stars. A 

general rule was followed that if a night of observations on an object did not indicate 

periodicity then it was labeled as a low priority target. Ideally an object should be looked at for 

a minimum of four hours before discounting variability (δ Scuti stars have a maximum period of 

a little less than 8 hours thus at least half of a full possible period should be gathered to fully 

discount the presence of pulsation). However this was not always done as variables in the  
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Target Comp Check UT Julian Instrument B Images V Images 

 
RA RA RA 

 
2455000 

   
Target DEC DEC DEC 

     AD Her 18h 50m 00.3s 18h 50m 13.3s 18h 50m 18.5s 25-Jun-2010 372.7021 0.3-m ---- 27 

 
+20o 43' 16.5" +20o 45' 01.6" +20o 45' 30" 28-Jun-2010 375.7534 0.9-m 86 86 

         AT Peg 22h 13m 23.5s 22h 12m 47.9s 22h 12m 56.4s 19-Aug-2010 427.6592 0.3-m 50 50 

 
+08o 25' 30.9"  +08o 33' 21.4"  +08o 31' 14.8" 

     
         CZ Aqr 23h 22m 20.6s 23h 22m 24.0s 23h 22m 34.6s 31-Jul-2010 408.7623 0.6-m 84 84 

 
-15o 56' 20.4" -15o 59' 14.5" -15o 55' 20.4" 8-Oct-2010 477.7341 0.6-m 89 84 

    
13-Oct-2010 482.5072 0.6-m 45 ---- 

         EE Peg 21h 40m 01.9s 21h 40m 17.3s 21h 39m 04.3s 18-Jun-2010 365.806 0.3-m ---- 48 

 
+09o 11' 05.1" +09o 00' 34.3" +09o 03' 23.0" 

              
EG Cep 20h 15m 56.8s 20h 14m 43.9s 20h 17m 52.9s 17-Aug-2010 425.7196 0.3-m 31 31 

 
+76o 48' 35.7" +76o 43' 11.2" +76o 40' 07.4" 

              EY Ori 05h 31m 18.4s 05h 31m 02.2s 05h 30m 59.6s 17-Nov-2010 517.7899 0.6-m 464 ---- 

 
-05o 42' 13.5" -05o 37' 27.5" -05o 39' 14.6" 10-Dec-2010 540.7472 0.9-m 107 

          
FO Ori 05h 28m 09s 05h 28m 35.4s 05h 28m 19.7s 2-Jan-2010 199.587 0.9-m 199 199 

 
+03o 37' 23" +03o 38' 45.0" +03o 36' 25.9" 7-Jan-2010 204.6062 0.9-m 168 204 

    
10-Jan-2010 207.6431 0.9-m 129 180 

         HS Her 18h 50m 49.7s 18h 50m 21.7s 18h 51m 07.7s 18-Jun-2010 365.6642 0.3-m ---- 74 

 
+24o 43' 11.9" +24o 38' 31.7" +24o 38' 58.3" 

     
         QY Aql 20h 09m 28.8s 20h 09m 25s 20h 09m 11s 1-Jul-2010 378.7433 0.6-m 60 60 

 
+15o 18' 44.7" +15o 17' 34" +15o 21' 49" 15-Jul-2010 392.645 0.4-m ---- 70 

    
9-Sep-2010 448.6848 0.4-m ---- 96 

         RR Vul 20h 54m 47.6s 20h 54m 37.7s 20h 54m 48.8s 6-Oct-2010 475.6726 0.4-m ---- 60 

 
+27o 55' 05.7" +27o 53' 11.2" +27o 57' 54.2" 7-Oct-2010 476.5624 0.4-m ---- 104 

         SW CMa 07h 08m 15.2s 07h 07m 54.9s 07h 07m 53.8s 7-Apr-2010 293.5004 0.6-m ---- 318 

 
-22o 26' 25.3" -22o 23' 26.1" -22o 25' 57.2" 

              SY Cen 13h 41m 51.5s 13h 42m 04.6s 13h 41m 52.1" 31-May-2010 348.4475 0.6-m ---- 162 

 
-61o 46' 10.1" -61o 44' 58.1" -61o 44' 35.2" 

     
         UX Her 17h 54m 07.8s 17h 54m 06.6s 17h 54m 13.0s 25-Jun-2010 372.6583 0.4-m ---- 93 

 
+16o 56' 37.8" +16o 58' 14.8" +17o 04' 37.8" 

     
         V805 Aql 19h 06m 18.2s 19h 06m 16.3s 19h 06m 12.6s 18-Jun-2010 365.7374 0.4-m ---- 50 

 
-11o 38' 57.3" -11o 35' 39.9" -11o 33' 18.3" 

              WY Leo 09h 31m 01.1s 09h 30m 52.5s 09h 30m 54.1s 29-Mar-2010 284.6481 0.9-m  ---- 115 

 
+16o 39' 25.2" +16o 33' 28.0" +16o 35' 46.1" 

              X Tri 02h 00m 33.7s 02h 00m 30.6s 02h 00m 37.8s 6-Oct-2010 475.7550 0.4-m ---- 101 

 
+27o 53' 19.2" +27o 47' 05.9" +27o 55' 10.8" 7-Oct-2010 476.6976 0.4-m ---- 212 

     Table 1.  Given are coordinates for the targets and comparison stars, dates, instruments, and number of exposures. 
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observing runs (i.e. clouds or priority given to other targets that did show signs of pulsation) 

played a factor in which systems were focused on. The systems AD Her, AT Peg, and EG Ceph 

did not meet the 4 hour requirement. Nonetheless, for the data acquired on those systems 

 PERANSO did not give positive results for periodic variability.   

 SY Cen showed periodicity. However, this is based on one night of observations. Only 

one usable night of telescope time at Cerro Tololo was allocated to the project while SY Cen 

was observable.  Thus, this object, above the others, is recommended for further observations 

to determine if periodicity does exist.  On the other hand, RR Vul’s light curve indicated possible 

periodicity from visual inspection. However, PERANSO did not detect a dominant period to 

sufficient confidence levels.  Again, further study on this object is encouraged in order to 

confirm the absence or presence of pulsation.   

 An object was determined to have strong periodicity if the period window in PERANSO 

showed a dominant peak above the noise in the Lomb-Scargle statistic (theta) and if this peak 

was not associated with a peak in the spectral window (the peaks in the spectral window show 

how the data were sampled).  Only peaks in the period window that were not found to be 

artifacts of the observing schedule were deemed as a peak possibly due to stellar pulsation.  

The pre-whitening function was also used to remove the dominant peak in order to look for 

evidence of multi-periodicity. 

3.3.1 Results 

 The results of positive detection for periodic behavior are presented in this section.  Of 

the observed systems, six were found to have strong periodicity and have not been published in 

the literature.  WY Leo was found to have periodicity but different from that already published  
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Target POrb PPulse Amplitude 

 
(day) (day) (mmag) 

AD Her 9.7666 ------- ------- 

AT Peg 1.1461 ------- ------- 

CZ Aqr 0.8628 0.0331(2) 12 

EE Peg 2.6282 ------- ------- 

EG Cep 0.5446 ------- ------- 

EY Ori 16.7878 0.1030(20) 20 

FO Ori 18.8006 0.0292(2) 5 

HS Her 1.6374 ------- ------- 

QY Aql 7.2296 0.1119(24) 12 

RR Vul 5.0507 ------ ------- 

SW CMa 10.092 ------- ------- 

SY Cen 6.6314 0.0936(119) 12 

UX Her 1.5489 ------- ------- 

V805 Aql 2.4082 ------- ------- 

WY Leo 4.9859 0.0457(28)*  ????? 

X Tri 0.9715 0.022(1) 10 
Table 2. Given are the orbital and pulsation periods, and the amplitudes. The asterisk by the pulsation period of WY Leo 
denotes that the pulsation period differs from that found by Dvorak (2009), while the question marks in the amplitude column 
indicate the amplitude was not constant throughout the data set (see Fig. 24).   

 

(see above comments).  Table 2 gives the orbital period of each system observed, the dominant 

pulsation period (if detected), and the measured amplitude.  All amplitudes were measured 

with the half-amplitude method.  The numbers in parentheses represent the uncertainty on the 

measurements as determined by PERANSO.  Each system will be discussed in detail with sample 

light curves and power-spectra given.  

 In each case a description of the results of each system in which pulsation was detected 

is given with all associated figures relegated to the end of this chapter (error bars are included 

on all light curves). 
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CZ Aqr 

 CZ Aqr was observed on three nights, 31-July, 8-Oct, and 13-Oct-2010 (UT).  A total of 

218 images in the B-filter and 164 in the V-filter were acquired.  The light curve in the B- filter 

for 31-July-2010 (UT) is shown below in Figure 4.  The photometric errors for the night ranged 

between 1.8 and 2 millimag.  The results of the period search are shown in Figure 5.  The 

determined period is 0.0331 + 0.0002 days. Figure 6 shows the power spectrum after the 

removal of the 0.0331 day peak.  It is possible these residual peaks are indicative of CZ Aqr 

having multiple modes of pulsation.  However, further observations will be needed to confirm 

whether or not CZ Aqr is indeed multi-modal at current photometric levels. Figure 7 shows the 

data for the 3 nights in the B-filter phased onto the 0.0331-day period. 

 

Figure 4. Light curve for CZ Aqr on the night of 31-July-2010 (UT).   
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Figure 5. Power-spectrum for CZ Aqr with peak at 0.0331 day. 

 

Figure 6.  Power-spectrum of CZ Aqr with the 0.0331 day peak removed. Residual is 0.0325 day. 
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Figure 7. Data for CZ Aqr phased onto the single 0.0331 day period. 

EY Ori  

 Observations on EY Ori were performed on 17-Nov-2010 and 10-Dec-2010 (UT).  A total 

of 571 images were acquired in the B-Filter over the course of the two nights.  The light curve 

for the night of 17-Nov-2010 is shown in Figure 8.  The amplitude is on the order of 20 millimag 

while the photometric errors ranged between 3.0 and 4.0 millimag.  The period was 

determined to be 0.1030 + 0.0020 day.  Figure 9 shows the power-spectrum with the 0.1030 

day period, while Figure 10 shows the power-spectrum with the 0.1030-day period removed.  

The residual shows a peak at 0.0621 + 0.0007 day and the data folded onto a single phase for 

both the dominant and secondary periods are shown in figures 11 and 12, respectively.  The 

phase diagram for the secondary period is suggestive of multi-modal behavior.   
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Figure 8. Light curve of EY Ori on night of 17-Nov-2010 (UT). 

 

Figure 9. Power-spectrum for EY Ori with peak at 0.1030 day. 

 

-2.55

-2.54

-2.53

-2.52

-2.51

-2.5

-2.49

-2.48

-2.47

55517.76 55517.8 55517.84 55517.88 55517.92 55517.96 55518

Δ Mag

JD +2400000



 

27 
 

 

Figure 10. Power-spectrum of EY Ori after removal of 0.1030 day period. Residual is 0.0621 day. 

 

Figure 11. Data for EY Ori folded onto the 0.1030 day period.   
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Figure 12. Data for EY Ori folded onto the 0.0621 day period after removal of the 0.1030 day 

periodicity. 

FO Ori 

 Data on FO Ori were acquired over the course of three days in January, 2010 with the 

0.9-m telescope.  FO Ori was originally observed as part of a separate project at Ball State 

University by faculty member Dr. Ronald Kaitchuck and students, Joe Childers, Ken Moorehead, 

Danielle Dabler, Matthew Knote, Elizabeth Beal and me.  However, after periodicity at low 

photometric levels was discovered, it was added to the study of this thesis.  It was deemed a 

potentially important data point as the original Pulsation Period vs. Orbital Period relationship 
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given by Soydugan et al. did not have orbital periods beyond 10 days.  FO Ori’s 18.8 day orbital 

period thus serves as an interesting check case for the validity of any such relationship beyond  

periods of 10 days. The implications for the validity of a Period/Period relationship will be given 

in Chapter 4. 

   Analysis of the 496 images in the B filter revealed a dominant period of 0.0292 + 

0.0002 day and a secondary period of 0.0297 + 0.0002 day (the 583 images in the V filter give 

0.0289 + 0.0002 day for the dominant period, thus in good agreement; although more images 

were taken in the V filter, the B filter data was slightly cleaner consistently).  The light curve for 

the night of 3-January-2010 in the B-filter is shown in figure 13.  Figure 14 shows the power-

spectra in the B filter for the three nights giving the dominant 0.0292 day.  Figure 15 shows the 

0.0297 day period with the 0.0292 day period removed.  Thus, again multi-periodicity is 

implied.  Data folded onto single phases of each period can be seen in Figures 16 and 17, 

respectively.  The amplitude of pulsation is about 50 millimag while the photometric errors 

were consistently (within ten percent) one millimag. 
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Figure 13. Light Curve for FO Ori on 3-Jan-2010 (UT). 

 

Figure 14. Power-spectrum of FO Ori in the B filter showing peak at 0.0292 days. 
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Figure 15. Power-spectrum of FO Ori in the B filter with 0.0297 day peak after 0.0292 day peak 
removed 
 

 

Figure 16. FO Ori B filter data phased onto the 0.0292 day period. 
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Figure 17. FO Ori B filter data phased onto the 0.0297 day period after 0.0292 day period 
removed. 

 
 QY Aql 

 QY Aql was observed on three separate nights using the 0.4-m telescope at Ball State.  

Analysis of the data acquired on the nights of 1-July-2010, 15-July-2010, and 9-Sep-2010 show a 

period of 0.1119 + 0.0024 day.  A secondary period of 0.1030 + 0.0020 day is found after 

removing the dominant period however the difference between the two frequencies is close to 

1 c/d, implying this may be an artifact of 24-hour aliasing.  Nonetheless, removal of this period 

from the period search reveals a secondary period at 0.1196 + 0.0028 days.  Figure 18 show the 

light curve in the V-Filter on the night of 1-July-2010 showing amplitude of about 10 millimag.  

The photometric errors associated with that night were two millimag or less.  Power-spectra for 

the 0.1119 and 0.1196 day periods are shown in figures 19 and 20.  The data folded onto the 

0.1119 day period is shown in figure 21. 
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Figure 18. Light Curve for QY Aql in the V filter on the night of 1-July-2010 (UT). 

 

Figure 19. Power-spectrum of QY Aql data in the V filter with dominant peak at 0.1119 day. 
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Figure 20. Power-spectrum of QY Aql with peak at 0.1196 day after removal of 0.1119 day peak. 

 

Figure 21. QY Aql V filter data phased onto the 0.1119 day period.  
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SY Cen 

 Of all the observed systems with periodicity detected, SY Cen is the most uncertain as to 

whether pulsation is truly present or not.  Only one night of data has been acquired to date, 

and thus the periodicity has not been confirmed in multiple image sets, and the uncertainty in 

the measurement is quite large due to having only gathered one complete cycle.  It is also the 

only target on the list for which a positive result for pulsation was detected and less than 200 

images were acquired.  It is strongly encouraged that further observations are obtained to 

confirm whether or not pulsations are indeed present or not.   

 Nonetheless, PERANSO detected periodicity from the analysis of the 162 V-filter images 

acquired on 31-May-2010 by the 0.6-m telescope.  The light curve indicates amplitude of about 

5 millimag.  Photometric errors were less than 3 millimag throughout the night.  The period was 

determined to be 0.0936 + 0.0119 day.  Figures 22 and 23 show the light curve and power- 

spectrum, respectively.  No secondary peaks are found when removing the 0.0936 day period 

from the period search. This should not be surprising as observations were only taken one 

night. Also as a consequence, no 24 hour aliases are found in the power-spectra.   
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Figure 22. SY Cen on the night of 31-May-2010 (UT) in the V filter.   

 

Figure 23. Power-spectrum of SY Cen in the V filter on the night of 31-May-2010. 
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WY Leo 

 As mentioned above, WY Leo has already been published in the literature (Dvorak, 

2009) with a reported period of 0.0656 day.  The author reported observations totaling 27 

nights.  The amplitude was determined to be 11 + 1 millimag. The observations for the earlier 

study were taken on a 0.25-m Meade Schmidt-Cassegrain with an SBIG ST-9XE CCD in the B and 

V filters.   

 These observations are in contrast to those performed for the purposes of this thesis.  

As indicated in Table 1, observations on WY Leo were performed on the night of 29-March-

2010. A total of 115 images were obtained on the 0.9 meter telescope in the V filter.  The light 

curve showed definite variability, however the level of variability changed throughout the data 

set and thus definitive amplitude could not be determined. Photometric errors ranged between 

1.5 and 1.8 millimag. The light curve is shown in Figure 24.  The determined period for the 

observations obtained that night was 0.0457 +0.0028 day (the power-spectrum is shown in 

Figure 25).  The asterisk in Table 2 next to the value of pulsation period indicates this differs 

from that obtained by Dvorak.  Thus it is possible some mechanism has been affecting the 

system causing a period change.  If this is the case, it would be a very significant period change 

in a short amount of time and would be worth further study.  On the other hand, it is cautioned 

that for this thesis only one night of observations have been gathered, compared to the 27 

nights by Dvorak.  It is possible the period has not changed from the 0.0656 day obtained 

earlier, but not enough cycles were obtained in one night of observing to detect the dominant 

period.  Thus, while further study of the object is encouraged, the caveat that one night of data-

taking should not be regarded as proof of change in the periodicity of the system.  Data were 
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taken on the night of 15-Jan2010 also from the 0.9-m telescope. However the quality of the 

data was not good enough to be included in this study.  Because of the insufficient amount of 

data to show a change in periodicity, for the purposes of further analysis, the pulsation period 

of 0.0656 day obtained by Dvorak will be adopted.  

 

Figure 24. Light curve for WY Leo on night of 29-March-2010 (UT) in the V filter. 
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Figure 25. Power-spectrum for WY Leo in the V filter showing the 0.0457 day period.  The 
residual peak is at 0.0831 day. 
 

X Tri  

 Also as stated above, X Tri has also been previously observed. However detection of 

pulsation in the earlier study was negative (Liakos, 2009).  In their study, a 0.4-m Cassegrain 

telescope was used with an ST-8XMEI CCD camera.  X Tri was observed on 13 separate nights in 

the B, V, and R filters.  The observations covered a time span of 25.3 hours.   

 X Tri was observed for this thesis on the nights of 6-Oct-2010 and 7-Oct-2010 using the 

0.4-m telescope on campus.  Over the two nights, 313 images in the V filter were obtained.    

These observations resulted in the lowest photometric errors obtained in this study, each 

measurement on 6-Oct-2010 being less than one millimag and 7-Oct-2010 were 1.3 millimag or 

less.  The light curve for 6-Oct-2010 is shown in Figure 26 (the data points do have error bars 

attached).  The determined period of pulsation is 0.0220 + 0.0001 day with amplitude of about 
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10 millimag.  The power-spectrum is shown in Figure 27.  Removal of the 0.0220 day period did 

not reveal any significant residuals in the power spectrum. It is not believed that X Tri is multi-

periodic, at least in the δ Scuti regime of periods.  Figure 28 shows the data folded onto the 

0.0220 day period.  

 

 

 

 

 

 

Figure 26. Light curve of X Tri in the V filter for the night of 6-Oct-2010 (UT). 
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Figure 27. Power-spectrum of X Tri in the V filter showing a peak at 0.0220 day.  

 

Figure 28. Data for X Tri folded onto a single phase for the 0.0220 day period. 

 

 



 
 

 
 

 

 

 
 
 
 
 

4. δ Scuti Stars in Close Binary Systems 
 
 
 

4.1 A Literature Review 

 Several campaigns have been implemented searching for δ Scuti stars in close binary 

systems.  In addition to the systems found by Kim et al. (2002), Mkrtichian et al. (2002) and 

others (the results of which were used for the initial relation between the orbital and pulsation 

periods by [1]), other campaigns have taken up the search in systems given in the catalogue by 

[2].  The results of these campaigns are presently collected from the literature and put together 

with the results of the above observing campaign.  The relationship between orbital period and 

pulsation period was extended to include these new systems.  Other relationships are also 

investigated including the force on the surface of the pulsating component by the secondary, 

resonance, and the Roche structure of the system.   

 Table 3 presents the values for orbital periods, masses, temperatures, and pulsation 

periods, as gathered from the literature.  As the literature contains studies not restricted to δ 

Scuti variables, only systems in which δ Scuti-type pulsations are firmly established have been 

included in the study.  From these data the pulsation period vs. orbital period relationship is 

extended from 20 systems to 40, while the possible relationship between the pulsation period 

vs. force has increased from eight systems to almost 35, six of which were added from my own 
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observations.  The data for masses, radii, and temperatures all come from [2] unless otherwise 

indicated.  RL1 and RL2 indicate the percentage of the Roche Lobe filled for the primary and 

secondary components respectively.  These data came from Brancewicz and Dworak (1980).  

Finally, the references column indicates which reference was used to find the information 

about the pulsation period and amplitudes.  As will be noted for the study by Pigulski and 

Michalska (2007), only three of the systems (the classical Algols) of the reported nine systems in 

which δ Scuti-type pulsation were included.  The authors admit in the remaining six systems the 

pulsation could be due to field stars as the data were taken from the third part of the All-Sky 

Automated Survey which had low spatial resolution.  WX Eri, which was included in the list in 

[2] was also omitted from this study after further observations could not confirm δ Scuti-type 

variability but instead found γ Doradus-type variability (Arentoft et al., 2004).  An interesting 

check for research involving δ Scuti-type variables would be to investigate if binarity seems to 

affect γ Doradus stars as it seems to for δ Scuti stars. 

 While most of the systems in Table 2 have come from [1] which introduced the 

relationship between the periods or [2] which introduced the catalogue from which the targets 

in Chapter 3 were chosen, some of the systems have been found elsewhere.  As is the case for 

some of the systems in [1], not all of the systems have data for parameters (masses, radii, 

temperatures) available; hence in the following there is a discrepancy between the period 

analysis (40 systems) and the force analysis (35 systems).  Also, while most systems are classic 

Algols, this study is not restricted to Algols only.  Another issue is that of mass transfer.  The 

authors of [1] mainly dealt with systems that either are currently mass-transferring or had in 

the past, leading to possible different evolutions than those in which transfer had not occurred.   
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Object Porb MP MS RP RS TP TS Ppulse magPulse RocheP RocheS q Ref 

 
day Msun Msun Rsun Rsun K K day mag 

    RZ Cas 1.1953 2.28 0.77 1.62 1.99 8600 4480 0.0156 0.0130 51 97 0.34 1 

AS Eri 2.6641 1.92 0.21 1.57 2.19 8476 5110 0.0169 0.0068 28 95 0.11 1 

CT Her 1.7864 1.98 1.90 1.97 1.99 9160 7600 0.0192 0.0300 50 53 0.96 1 

TZ Dra 0.8660 2.12 1.28 2.03 1.72 7900 5560 0.0194 
 

83 89 0.60 1 

VV Uma 0.6874 2.26 0.68 1.67 1.31 9106 5579 0.0195 0.0150 74 101 0.30 1 

IU Per 0.8570 2.42 2.03 1.88 1.74 8150 8060 0.0238 0.0200 76 77 0.84 1 

V469 Cyg 1.3125 
      

0.0278 0.0200 
   

1 

HIP 7666 2.3723 
      

0.0409 0.0200 
   

1 

AO Ser 0.8793 2.56 1.14 1.80 1.79 8970 6090 0.0465 0.0200 67 96 0.45 1 

R CMa 1.1359 1.07 0.17 1.50 1.15 7310 4355 0.0471 0.0088 56 103 0.16 1 

V346 Cyg 2.7433 2.34 1.83 3.75 4.74 8390 6640 0.0502 0.0300 70 100 0.78 1 

RX Hya 2.2817 1.68 0.40 1.70 2.4 7616 4484 0.0516 0.0140 36 99 0.24 1 

TZ Eri 2.6062 1.97 0.37 1.69 2.6 7770 4570 0.0534 
 

34 52 0.19 1 

TW Dra 2.8069 1.58 0.74 2.40 3.4 8355 4320 0.0556 0.0042 47 103 0.47 1 

TU Her 2.2669 1.43 0.57 1.60 2.7 6300 3600 0.0556 0.0080 35 95 0.40 1 

AB Cas 1.3669 2.30 1.10 1.97 1.48 8588 3900 0.0583 0.0392 41 67 0.48 1 

Y Cam 3.3057 1.70 0.40 2.92 2.95 7219 4507 0.0665 0.0116 46 88 0.24 1 

EF Her 4.7292 1.93 1.41 2.36 2.34 7040 6650 0.1042 0.0600 33 37 0.73 1 

AI Hya 8.2897 1.98 2.15 2.77 3.92 7096 6699 0.1380 0.0200 28 24 1.09 1 

AB Per 7.1603 2.08 0.52 2.52 3.73 
  

0.1958 0.0400 23 99 0.25 1 

IV Cas 0.9985 2.60 1.24 2.00 2.22 8885 6372 0.0265 0.0100 68 106 0.48 2 

HD 172189 5.7020 
      

0.0510 
    

2 

V577 Oph 6.0791 2.08 0.52 2.52 5.73 8720 5690 0.0695 0.0289 23 99 0.25 2 

RS Cha 1.6699 1.89 1.87 2.15 2.36 7638 7228 0.0860 0.0168 64 60 0.99 2 

RR Lep 0.9154 2.9 1.769 2.89 2.13 8970 7240 0.0314 
 

103 95 0.61 3 

BG Peg 1.9523 2.53 1.2903 2.4 3.35 8950 6900 0.0400 
 

53 102 0.51 3 

AC Tau 2.0434 1.45 0.986 2.3 2.9 7200 5920 0.0570 
 

61 92 0.68 3 

WY Leo 4.9879 2.31 1.4091 2.36 2.65 9640 7940 0.0656 
 

40 41 0.61 3 

TY Cap 1.4235 2.50 2.05 2.89 2.57 7880 3780 0.0413 
 

82 80 0.82 4 

WY Cet 1.9397 2.47 1.8772 2.16 2.16 9190 8690 0.0758 
 

50 57 0.76 4 

IZ Tel 4.8802 
      

0.0738 0.0459 
   

5 

MX Pav 5.7308 
      

0.0756 0.0769 
   

5 

VY Mic 4.4364 2.39 1.96 2.24 4.46 8770 5320 0.0817 0.0194 30 66 0.82 5 

Y Leo 1.6861 2.6 
     

0.0290 
    

6 

X Tri 0.9715 2.3 1.2 1.71 1.96 8600 5200 0.0220 0.0100 65 92 0.52 7 

FO Ori 18.8006 2.19 1.49 1.87 1.1 8900 6840 0.0286 0.0500 10 7 0.68 7 

CZ Aqr 0.8628 2.96 1.48 1.91 2 7780 5860 0.0331 0.0120 69 100 0.50 7 

SY Cen 6.6314 3.33 1.665 2.39 6.34 7690 4540 0.0936 0.0120 21 78 0.50 7 

QY Aql 7.2296 2.69 0.7532 4.41 5.52 6930 5240 0.0972 0.0120 38 83 0.28 7 

EY Ori 16.7878 2.52 2.09 3.51 8.47 7179 4816 0.1050 0.0200 19 51 0.83 7 

               
Table 3.  General Properties of close binary systems with pulsating components.  References for pulsation period: 
(1) Soydugan et al. (2006a); (2) Soydugan et al. (2006b); (3) Dvorak (2009); (4) Liakos a& Niarchos (Liakos 2009); (5) 
Pigulski & Michalska (2007); (6) Turcu & Moldovan (2008); (7) Turner & Kaitchuck in the present study 
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Target Orbital Period Pulsation Period Uncertainty 

 
(days) (days) (days) 

CT Her 1.7864 0.018891414 4.E-09 

AS Eri 2.6641 0.01694021 1.E-08 

RZ Cas 1.1953 0.01557790 5.E-08 

AB Cas 1.3669 0.0582873 3.E-07 

Y Cam 3.3057 0.0664587 4.E-07 

VV Uma 0.6874 0.019516 3.E-06 

IU Per 0.857 0.023751 5.E-06 

AI Hya 8.2897 0.138031 6.E-06 

HIP 7666 2.3723 0.04088 1.E-05 

TW Dra 2.8069 0.05559 6.E-05 

AB Per 7.1603 0.1958 3.E-04 

TU Her 2.2669 0.0556 6.E-04 

R CMa 1.1359 0.048 2.E-03 

IV Cas 0.9958 0.03058819 7.E-08 

HD 172189 5.702 0.0510272 2.E-07 

V577 Oph 6.0791 0.069491 4.E-06 

BG Peg 1.9524 0.0400229 2.E-07 

RR Lep 0.91543 0.0313820 3.E-07 

WY Leo 4.9859 0.0655617 4.E-07 

AC Tau 2.0434 0.057035 3.E-06 

MX Pav 5.730835 0.07560166 6.E-08 

IZ Tel 4.880219 0.0737572 1.E-07 

VY Mic 4.436373 0.0817387 2.E-07 

Y Leo 1.6861 0.0289995 5.E-07 

X Tri 0.9715 0.022 1.E-04 

CZ Aqr 0.862759 0.0331 2.E-04 

QY Aql 7.2296 0.097 9.E-03 

SY Cen 6.63136 0.09 1.E-02 

EY Ori 16.7878 0.105 9.E-03 

FO Ori 18.8006 0.0286 1.E-04 

 
Table 4.  Pulsating Systems with uncertainty in the pulsation period. 

Kaitchuck et al. (1985) observed several binary systems in an effort to detect emission lines 

indicative of mass transfer.  Of the systems shown in Table 2, six systems were analyzed by  

Kaitchuck et al (RZ Cas, AB Cas, TW Dra, TZ Eri, Y Leo, and X Tri). Only TZ Eri showed evidence 

for line emission. Although we assume all the systems have at one time transferred mass, it is 
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arguable that such evolutionary history does not, at least to a first approximation, have much 

effect on the pulsation period. 

 From the data in Table 2, 30 systems have uncertainties listed for the pulsation periods.  

The remaining 10 systems did not have uncertainties reported by the authors. The conclusions 

drawn from analysis are therefore reduced.  The systems with associated errors are listed in 

Table 3. 

 The next section compares the δ Scuti stars in Table 2 with companionless δ Stars.  

Afterward the effects of various orbital parameters on pulsation such as orbital period, 

potential, percentage of the Roche Lobe filled, and force from the companion, are investigated.  

Each of these will be developed with only those systems with reported uncertainties.  This 

chapter will end with each of these relationships extended to the systems in which errors were 

not reported, as the relationships found in the literature typically are not fit with errors on the 

individual pulsation periods.  This will serve as a comparison to the relationships found in the 

literature.   

 Each observed relation is given as a linear fit.  This was done because no a priori 

theoretical reasons could be found that they should not be linear.  The linear models which 

were fit involving errors were done using the method given in Bevington (2003, pg. 114), while 

those fit without errors were done with the basic least-squares method as can be found in 

Taylor (1982, chapters 2 and 8).   

4.2 δ Scuti stars with and without companions 

 The first step in examining if binarity has any effect on pulsation is to look at the 

pulsation periods of δ Scuti stars that are not part of close binary systems and compare them  
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Figure 29.  Histogram of δ Scuti stars in close binary systems binned by period in intervals of 0.01 days. 

 

 

 

Figure 30. Histogram of single δ Scuti stars binned by period in intervals of 0.01 days. 
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with the periods of the systems in Table 2.  Histograms of the systems in Table 2 and those of 

the catalogue of Rodriguez et al. (2000) (see Introduction) are presented in Figures 29 and 30, 

respectively. Although the catalogue by Rodriguez contains 636 variables, only 627 were used 

as nine are also in Table 2.  Figures 29 and 30 were created by sorting the data by period.  The 

data were then binned in intervals of 0.01 days, starting at 0.015 days.   

 Inspection of the histograms reveals significant differences.  Of the 40 systems in Table 

2, 38 are found to have periods of 0.105 days or less (on the order of 90 %).  This is in contrast 

to the data from Figure 30; about 50% of single δ Scuti stars are in this range.  Whereas 50 % of 

the systems in Figure 28 are found to have 0.055 day periods or less, 85 % of the stars in Figure 

29 can be found between the 0.065 and 0.2950 day bins.  From these figures it is evident that 

binarity in close systems may cause a decrease in the mean pulsation period. 

  4.3 Pulsation Period vs. Orbital Period  

 The original relationship found by [1] was reported as 

Ppulse=0.020(2)Porb – 0.005(8)                                                      (4.1) 

where the parentheses represent the uncertainty in the last digit.  A total of 20 systems were 

used to obtain the relationship.  A correlation coefficient of 0.89 was found and quoted as 

‘highly significant’.  Of these, 17 have less than a four-day orbital period.  To verify a 

relationship as given by [1] an expansion to include systems beyond the 4 day mark is needed.  

Fortunately, through the various observing campaigns searching for pulsating stars in close 

binary systems this deficiency has been addressed, including three discovered by myself; SY 

Cen, QY Aql, EY Ori, and one discovered by Ronald Kaitchuck, FO Ori.  From the data in Table 2, 

it can be seen that of the 41 systems used for analysis, 14 systems are above four-day orbital  
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Figure 31.  Pulsation period vs. orbital period.  Note EY Ori and FO Ori as outliers. 

periods. This is on the order of 30% of the systems. This is compared to 15% of the original 

study by [1].  The pulsation periods found in Table 3 were plotted against the orbital period in 

Figure 31.  

 If, based on Figure 31, we take EY Ori and FO Ori as outliers and calculate the least-

squares fit using the remaining 28 systems; the linear trend is given as:  

Ppulse = 0.014(2)Porb + 0.011(8)                                           (4.2). 

The correlation coefficient for this relationship is 0.82. For 28 measurements, this corresponds 

to a ProbN(|r|>|ro) of less than 0.1 percent.  A relationship is considered significant below five 

percent and highly significant below one percent (Taylor, 1997).  If EY Ori and FO Ori are 
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included, the coefficient value drops to 0.45.  For 30 systems, this gives a probability below 

2.9%, indicating the relationship is significant, but not as highly so. 

 Whereas the sample in [1] had only three systems above the 4 day mark for the orbital 

period, the relationship given in eq. 4.2 utilized 11 systems above the four day threshold (13 if 

FO Ori and EY Ori are included).  This should therefore be a good indicator as to the true nature 

of a trend if one does indeed exist.   

 The additions of EY Ori and FO Ori into the sample population give interesting tests for 

points beyond the 10 day mark (if we exclude these two points, the r value increases to 0.88, a 

significant increase).   If the systems under the 10 day mark represent physical altering of the 

pulsation period by (presumably) the proximity of the pulsating component to its companion, 

then examination of the positions of EY Ori and FO Ori on the plot would lead to different 

possible conclusions.  First, it could mean the relationship exists under the 10 day orbital period 

and these two objects are spurious.  Second, the mechanism responsible for altering the 

pulsation period may weaken and a different relationship, possibly non-linear, holds beyond 10 

days to some unknown orbital period, beyond which we should be able to assume the 

components evolve more or less as individual stars.   A third possibility is that any physical 

mechanism ceases to work after about the 10 day orbital period and the pulsations are 

unaffected.  Fourth, the pulsations may not be physically altered by the presence of a 

companion and the effect we see up to the 10 day mark is simply spurious.  The fifth possibility 

is that the orbital period, being dependent on other fundamental quantities, is not the 

parameter that should be sought to describe the influence of pulsation periods.  To investigate 

these possibilities further, we turn next to the gravitational potential in the system. 
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4.4 Potential and Pulsation 

 In an effort to find a more fundamental relationship between the pulsation period and 

the influence of a close companion, gravitational potential was investigated.  Using the Roche 

approximation (discussed in 2.1.2) for the distance from the center of the star to a point on the 

surface in the y-direction (with the stars in the x-y plane), a formula for the potential on that 

point was derived.  As the surfaces of the stars are equipotentials, this value will reflect the 

potential across the surface of the star.  Inserting the Roche approximation into the equation 

for potential yields: 

[ ] 2222 )(
2
1)( ωξγβα +−+−=Φ aG                                               (4.6) 

where α = M1/(aξ ), β =M2/[a(ξ 2+1)1/2], γ =M2/(M1+M2), ξ =0.378q0.2084, a is the semi major 

axis as expressed by Kepler’s Third law, and ω = (2π)/P (see appendix for derivation of eq. 4.6). 

The pulsation period vs. the potential is plotted in Figure 32.  As with the pulsation period vs. 

orbital period relationship, there seems to be a weak correlation between the potential and 

pulsation period (in calculating the potential, the minus sign in eq. 4.6 was ignored in order to 

be able to take the logarithm).  The deeper the surface of the pulsating star is in a potential well 

the shorter the pulsations are, in general.   

 Of the systems in Table 3 whose masses were given in Table 2, 25 were available for 

analysis.  Again, a glance at the graph indicates FO Ori to be an outlier (interestingly, EY Ori is 

not an outlier here) along with AB Per.  Taking this as the case and only using the other 23 

systems, a fit is given as: 

log Ppulse = -0.87(15) logΦ + 1.56(50)                                                      (4.7) 

 



 

52 
 

 

Figure 32.  Pulsation period vs. the potential on the surface of the primary. 

with a correlation coefficient of 0.82 was found. This correlation is below the one percent value 

for ProbN(|r|>|ro) and can be considered highly significant.  To see if the relationship tightens, 

one possible line of further investigation would be to determine the potential at a point at the 

equilibrium position of the ionization zone responsible for the pulsations. To do this, detailed 

knowledge of where the zones are for each star would be necessary.  Presumably one would be  

able to obtain a reasonable estimate based on the type of pulsation (radial vs. non-radial) and 

the mode(s) in which the star pulsates. Because no modal identification was attempted in this 

study, this was not pursued.   
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4.5 Roche Lobe Filling 

 As described in section 2.1.2 the Roche geometry of a binary system is of fundamental 

importance in describing the physical characteristics of the system.   Figure 33 shows the 

pulsation period as a function of percentage of Roche Lobe filled. RL% is the percent of the 

Roche Lobe filled (data taken from Table 2). The graph shows 25 data points. Inspection shows 

three significant outliers, FO Ori, AS Eri, and RZ Cas.  FO Ori, can justifiably be excluded from 

this analysis due to its separation and high mass ratio (q = 0.68).  The components of this 

system should not be significantly distorted from spherical symmetry.  AS Eri can justifiably be 

ignored due to its low mass ratio (q=0.11).  The pulsating component in this system is much 

more massive than its companion.  It should therefore not have a significant departure from 

spherical symmetry.  RZ Cas is a slightly harder system to justify excluding.  The system has a 

mass ratio of q = 0.34.  This is not significantly small.  Also, the close proximity due to the short 

orbital period lends to more Roche Lobe filling than FO Ori, for example.    

 However, the relationship shows a much higher correlation excluding these systems, 

enough so that exclusion may be justified on statistical grounds alone.  Using the remaining 12 

systems a relationship of: 

log Ppulse= -1.15 (18) log (RL%) - 0.62(30)                                                    (4.8) 

was found.  The relationship has a correlation coefficient of 0.82.  This yields a ProbN(|r|>|ro) 

below the 0.05% level, indicating a highly significant relationship.  If the other three data points 

are included, the correlation coefficient drops to 0.48, indicating a ProbN(|r|>|ro) just above the 

1% level, indicating a significant, albeit to a lesser degree, relationship. 
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Figure 33.  Pulsation period vs. the percent of the Roche Lobe filled by the pulsator. 

4.6 Force and Pulsation 

 The other relationship [1] investigated was how the force of the companion on the 

surface of the pulsator affected pulsation.  In order to do so, the authors plotted the force per 

unit mass the companion exerts on the surface of the pulsating star.  In their initial study, only 

eight systems were used. Nonetheless, a fairly strong correlation was found.  One thing to note 

is this model did not take into account Roche distortion, but treated the pulsating variables as 

spheres.  This assumption may be a valid assumption, at least to first order.  Several of the 

systems in Table 2 are included in the compendium Binary Stars: A Pictorial Atlas (Terrell, 

Mukherjee, Wilson, 1992).  Included are VV Uma, R CMa, X Tri, AS Eri, Y Cam, and QY Aql.  The 

book gives values for the interesting points on the surface of each star after calculating the 

Roche distortion (the points of interest are points closest and farthest from the secondary along 
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the axis of revolution, along with the points on the surface in the y and z directions as seen 

facing the orbital plane).  Solutions to the systems were aided by code developed by Wilson & 

Devinney (1971).  In each case the pulsating star is found to deviate from spherical symmetry 

less than ten percent (in most cases, less than five).  This could indicate that a spherical 

approximation for δ Scuti pulsators in detached and semi-detached systems, especially for 

oEA’s, is a valid assumption.  Because the δ Scuti is generally the more massive object in oEA 

systems, the spherical structure will not be greatly affected by the proximity of a less massive 

companion (this is essentially the same argument used for not including AS Eri above).   

 The study of [1] investigated the force on the surface of the pulsator due to the 

companion per unit mass of the pulsator.  In equation form, the force is calculated as 

 

2d
GM

M
F C

P

=                                                                       (4.9) 

where d is the distance from the center of mass of MC to the surface of MP (Mp and Mc indicate 

the mass of the pulsator and companion respectively; for most cases Mp=M1 and Mc=M2 from 

Table 2).  Using the given spherical radii from [1], we have d = a – R1 and eq. 4.9 becomes 

2
1 )( Ra

GM
M
F C

P −
=                                                                 (4.10) 

with a being the semi major axis.  The number of systems is extended to 25 and the results are 

shown in Figure 34.  Again, FO Ori and AS Eri are outliers in the data ([1] excluded AS Eri from 

their force analysis).  Excluding these from the analysis, a relationship of  

log Ppulse = -0.460(70) log (F/MP) - 1.261(38)                                          (4.11) 
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Figure 34.  The pulsation period vs. the force of the companion on the surface of the pulsator. 

was found while the correlation coefficient for the data is 0.86, indicating a highly significant 

relationship (if we include FO Ori and AS Eri, the relationship drops to the significant level, but is 
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pulsation periods, one should look at the pulsation equilibrium position within the star.  As 
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the case, as above, if the modes and equilibrium position were identified, one could then 

calculate the force from the companion at the equilibrium position.  If this scenario is indeed 

the case, then it should not be surprising that Figure 31 shows a strong relationship as, at least 

to a first order approximation for a given δ Scuti star, the equilibrium position of the ionization 

zone(s) is roughly equal to the stellar radius.  Again, this would require detailed knowledge of 

the pulsation mode(s) of each star to determine the equilibrium position of the oscillating 

layers in the ionization zones.   

4.7 Resonance  

Target Porb Ppulse sigma Porb/Ppulse 

CT Her 1.7864 0.018891414 0.000000004 94.5614762 

AS Eri 2.6641 0.01694021 0.00000001 157.264913 

RZ Cas 1.1953 0.01557790 0.00000005 76.7304906 

AB Cas 1.3669 0.0582873 0.0000003 23.4510832 

Y Cam 3.3057 0.0664587 0.0000004 49.7406365 

VV Uma 0.6874 0.019516 0.000003 35.2216886 

IU Per 0.8570 0.023751 0.000005 36.082271 

AI Hya 8.2897 0.138031 0.000006 60.0570164 

HIP 7666 2.3723 0.04088 0.00001 58.0335749 

TW Dra 2.8069 0.05559 0.00006 50.496131 

IV Cas 0.9958 0.03058819 0.00000007 32.5550521 

HD 172189 5.7020 0.0510272 0.0000002 111.744375 

V577 Oph 6.0791 0.069491 0.000004 87.4800727 

BG Peg 1.9524 0.0400229 0.0000002 48.7820807 

RR Lep 0.91543 0.0313820 0.0000003 29.1705431 

WY Leo 4.9859 0.0655617 0.0000004 76.0489355 

AC Tau 2.0434 0.057035 0.000003 35.8269322 

MX Pav 5.730835 0.07560166 0.00000006 75.8030268 

IZ Tel 4.880219 0.0737572 0.0000001 66.1660434 

VY Mic 4.436373 0.0817387 0.0000002 54.2750797 

Y Leo 1.6861 0.0289995 0.0000005 58.1424102 

X Tri 0.9715 0.022 0.0001 44.1590909 

FO Ori 18.8006 0.0286 0.0001 657.363636 
Table 5.  The Porb/Ppulse ratios are calculated for the systems whose uncertainties are known to a high degree. 
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 Several papers have alluded to certain systems having a close-to-integer ratio between 

the orbital period and pulsation period and it has been suggested there is a mechanism for 

causing this resonance.  Investigating resonances involves determining both the orbital period 

and pulsation period to a very high degree of accuracy.  As a result, of the 30 systems for which 

uncertainties are available, 22 systems were known to a high enough precision to carry out the 

analysis.  The results are shown in Table 4.  As can be seen, only a handful of systems are less 

than 1/10th of an integer away from a whole number.  Tsvetkov and Petrova (1993) noted that 

Porb/Ppulse was very nearly 50, 20, and 60 for Y Cam, RS Cha, and AI Hya respectively. The 

Porb/Ppulse values they give are 49.74, 19.88, and 60.06, respectively.  However, no claim as to 

what ‘is nearly’ and what is not is given.  Obviously of these three AI Hya is the closest to an 

integer multiple, and yet Y Cam is also put in this class at 49.74.  This is 0.26, or 26 % away from  

the closest integer value.  This leads to an estimated range of 52% (26% each way of an integer 

value) at which the ratio would be considered ‘close’ (for example, if the value of the ratio was 

found to be between 25 and 26, everything from 25.0-25.26, and 25.74 and 26.0 would be 

included in the range at which it would be considered ‘close’ to an integer).  Because this is a 

rather large percent of the range between integers, I have only included values that are within  

1/10th of an integer value for analysis. Of the 22 systems in Table 4, four have Porb/Ppulse ratios 

below the 1/10th integer value.  This is on the order of about 18%.  Because only a very few of 

these systems seem to be in some sort of resonance, it is concluded that while resonance may 

occur in some systems, it is not a uniform phenomena that can be predicted by placing a δ Scuti 

star in a close binary system alone.  Further investigations into specific modes may however 

prove an interesting line of research.  It may be eventually shown that a resonance mechanism 
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does play a role for specific pulsation modes.  Until more theoretical and observational 

groundwork is laid, however, this aspect remains a conspicuous question mark as to whether it 

is a predictable effect or if this is coincidence. 

4.8 Pulsation Period vs. Orbital Parameters without Uncertainties   

 The relationships derived earlier are now generalized without the uncertainties on the 

pulsation periods attached.  This is done to serve as a check for both the results above and to 

compare with similar procedures in the literature (notably that of [1]) where many relationships 

are derived without uncertainties attached.  In general this should be a valid assumption as to 

report a discovery in refereed literature one should have enough cycles to determine the 

period to a high degree of accuracy.  

 We begin by plotting the pulsation periods vs. orbital periods for all of the systems in 

Table 2.  The results are shown in Figure 35 where over 40 systems were used in the analysis.  

As done earlier, FO Ori and EY Ori are taken to be outliers.  The data were fit to give a 

relationship of: 

Ppulse = 0.013(2) Porb + 0.018(6)                                            (4.12) 

with a correlation coefficient is 0.79.  This is highly significant.  If EY Ori and FO Ori are included 

in the analysis, the correlation coefficient drops to 0.45, yet for 40 systems this is still below the 

1% level and is significant.  On the other hand, the slope decreases to 0.0042, almost 1/3 of the 

given slope above, which is a very significant change.    

 As noted above, several interpretations arise when looking at this graph.  First, note the 

slope is less steep than that given by [1]. The notable outlier on Figure 35 is AB Per.  The first 

interpretation is similar to above, that a physical relationship exists for binaries with periods 
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Figure 35. Pulsation periods vs. the orbital periods.   

less than 10 days.  As was the case with the plot generated by [1] and the four-day orbital 

period, more systems between the 10 and 18-day orbital period would be needed.  A second 

interpretation is that, as the slope did decrease significantly, that no true relationship between 

the orbital period and pulsation period exists.  The hypothesis is that as more pulsating stars in 

binaries in the 10 to 18 day range are found, the closer to zero the slope becomes.  If this 

becomes the case, it can be concluded that if binarity affects the pulsation period, then the 

orbital period is not the fundamental quantity to be interested in.   

 The second parameter investigated is the pulsation period vs. the potential on the 

surface of the pulsator.  Figure 36 shows the pulsation period as a function of the potential.  As 

done earlier, of the 34 systems used, FO Ori was excluded due to being the largest outlier.  The 

fit relationship is given as: 
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Figure 36. Pulsation period as a function of potential on the surface of the pulsator.   

 log Ppulse = -0.90(13) log Φ + 1.70(43)                                             (4.13) 

and the correlation coefficient is 0.78.  This places the probability below 1 percent, indicating a 

highly significant relationship.  Inclusion of FO Ori in the data causes the slope to increase from 

-0.90 to -0.68 and the correlation coefficient decreases from 0.76 to 0.64, still in the highly 

significant regime.   

 Even with FO Ori as an outlier, there seems to be at least a weak trend in the data and 

although there isn’t an apparently strong mathematical trend, the linear fit seems to be the 

best according to the data.  Again, perhaps the relationship could be tightened when the 

potential well the ionization zone is in could be determined to higher accuracy.  

 Next, the Roche Lobe filling was examined.  Figure 37 shows the pulsation period as a 

function of the Roche Lobe filling.  As was done previously, FO Ori and AS Eri and RZ Cas are left 
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Figure 37.  Pulsation period as a function of percentage of Roche Lobe filled. 

out to be consistent with procedure.  The fit for the relationship is: 

log Ppulse = -0.99(16) log (RL%) +0.37(27)                                        (4.14) 

with a correlation coefficient of 0.76, indicating high significance.  This data set utilized 31 

systems.  Including FO Ori, AS Eri, and RZ Cas, the slope increases from -0.99 to -0.56 while the 

correlation coefficient drops to 0.45, still at the significant level.  Inspection of Figure 34 does 

seem to indicate a general trend that as the percent the Roche Lobe is filled, the shorter the 

pulsations become.    

 The last parameter investigated is the force on the surface of the pulsator due to the 

companion.  Over 35 systems are used for this analysis, or over four times as many as the 

relation derived in [1].  Although there are only 34 systems in Table 2, I added a data point for a 

pulsating star with a close exoplanet, WASP-33b (Herrero et al. 2011).  This data point should  
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Figure 38. Pulsation period vs. force of the companion on the surface of the pulsator. 

be interesting; if there is a relationship between the force a companion has on the surface of a 

pulsating star, is there a minimum mass needed by the companion to trigger the phenomenon?   

As is shown in Figure 38, WASP-33b falls on the trend nicely.  Again, FO Ori, AS Eri, and RZ Cas 

are the outliers.  Thus for the 32 remaining systems the fit was found to be: 

log Ppulse=-0.38(5) log (F/m)-1.22(3)                                      (4.15) 

where the correlation coefficient is found to be 0.79, indicating a high level of significance.  If 

the three outliers are included, the slope increases to 0.27(7) and the correlation coefficient 

drops to 0.55.  The uncertainties in both slopes overlap, as such there is no significant 

difference between the two models, only a slightly better fit, however both are highly 

significant. 
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4.9 Summary of Results  

 All of the above relationships seek to determine if orbital parameters of close binary 

systems affect stellar pulsation.  Two methods and thus two different calculations have been 

performed for each parameter.  These are the orbital period, gravitational potential, percent of  

Roche Lobe filled, and force per unit mass on the pulsator’s surface due to the companion.  In 

this section the results are summarized and presented in Table 5.  Presented in the table are 

the slopes and uncertainties for each fit and the correlation coefficients for each.  Method 1 

represents the linear fits with uncertainties, and Method 2 is the fit without.   

 
Slopes 

 
Correlation Coeff 

 
Method 

 
Method 

Relationship 1 2 
 

1 2 

      Ppulse vs. Porb 0.014 + 0.002 0.013 + 0.002 
 

0.82 0.79 

      log Ppulse vs. logΦ -0.87 + 0.15 -0.90 + 0.13 
 

0.82 0.78 

      log Ppulse vs. Log RL% -1.15 + 18 -0.99 + 0.16 
 

0.82 0.76 

      log Ppulse vs. log F/Mp -0.46 + 0.07 -0.38 + 0.05 
 

0.86 0.79 
Table 6.  Summary of the fit relationships for each method and correlation coefficients. 

 Inspection of Table 5 reveals consistency between the slopes of the methods.  This 

indicates the possible validity of the given relationships as in each case a significantly greater 

number of data points for Method 2 than Method 1.  The two relationships with the lowest 

uncertainties and highest correlation coefficients are the Porb and F/MP.   

4.10 Theoretical Considerations 

 If a relationship between the pulsation period and various orbital parameters exists then 

one would be inclined to see if the relationship(s) could be derived analytically.  From section 
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2.2.1 it was shown that the pulsation period for an isolated star is related to the pulsation 

constant and the mean density of the pulsating star.  The mean density is dependent on the 

mass of the pulsator.  In the cases of the orbital period, potential, and force, each had explicit 

expressions involving the mass of the pulsator.  These equations could be solved for the mass of 

the pulsator and these expressions inserted into the Period-mean density relationship.  Because 

the relationship involves a ratio of the density of the sun to the pulsators density, it can be 

written as: 

ρ
ρ sunQ=Π                                                                 (4.16) 

and because the relationships above were given in solar units, the expression can be re-

arranged to the form: 

P

P

M
RQ

3

=Π                                                                 (4.17). 

If Kepler’s Third law is solved for the mass of the pulsating star and this is inserted into equation 

4.17, we obtain:  
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After some rearrangement and substituting Kepler’s Third law again to eliminate the orbital 

period in the denominator, we arrive at: 
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at which point one might be tempted to perform a Taylor series on the last term in order to 

attempt to obtain an equation of the usual form y = mx + b with P being the independent 

variable.  However, two observations render this reasoning invalid.  First, in order to perform a 

Taylor series on an expression of the form [1-x]-1/2, x must be a small number (generally below 

½).  This isn’t necessarily the case, as here, MP and RP designate, from equation 4.17, the mass 

and radius of the pulsating star and MS designates the mass of the companion.  Of the systems 

in Table 2, four of the pulsators are thought to be the cooler component. These are AI Hya, RS 

Cha, WY Leo, and WY Cet.  Of these four, three of them have the companion’s mass larger than 

the pulsator’s mass.  This leads to a term larger than ½.  So the Taylor series is, in general, an 

invalid technique here. Secondly and more importantly, while equation 4.19 does seem linear in 

P, it turns out that, for a given pulsation constant (i.e. for a given pulsation mode), equation 

4.19 gives a horizontal line.  This is due to the conspicuous a3 in the denominator of the second 

factor.  If we take it out of the brackets, we get a P/a3/2 term, which, by Kepler’s Third law, is 

equal to constants for a given set of masses.  This implies that if binarity affects pulsation, it 

does more so than simple consideration of how the period-mean density relation is related to 

orbital parameters through the pulsator’s mass.   

 One line of reasoning is that some orbital parameter alone is not what is affected, but 

binarity also affects the pulsation mode(s), therefore affecting the Q value.  If this is the case, 

this might help explain much of the scatter present in each of the figures given above.  Perhaps 

separate and tighter relationships exist for each given pulsation mode, but because 

photometrically detectable modes are all low-order (n=1, 2, 3, etc…; ℓ=1, 2, etc…) these provide 

periods close enough to provide what appear to be weak relationships.  If it could be found that 
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binarity affects Q, it would be interesting to reformulate all of the relationships given above to 

see if/how much tighter each one is. 

 From this it can be concluded that deeper theoretical arguments need to be formulated 

and investigated, leading to the fact that more observations would then be needed.  For 

theoretical models to be checked with high precision, all of the parameters of each system 

would need to be known to a high precision as well.  This means observations that would yield 

mass ratios and therefore masses where errors would likely be on the order of a few percent or 

less.  Likewise pulsation modes (also dependent on the mass and radius of the pulsating star) 

would need to be known extremely accurately as well (while improvements in this area are 

being made, the precision needed may not be there yet).   

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 
 

 
 
 
 
 
 
 

 

5.  Conclusion 
 
 
 

 This thesis has sought to explore how a close companion might influence stellar 

pulsations of δ Scuti stars.  This work sought to further that of [1] which introduced an empirical 

relationship between the pulsation period and orbital period and also explored how the force 

on the surface of the pulsator due to the companion may influence the pulsation period.  Both 

show the same general result; as the pulsation period increases and thus the force decreases, 

the pulsation periods are observed to increase.  The pulsation period vs. orbital period from [1] 

involved 20 systems with a fit of Ppulse = -0.020(2) Porb – 0.005(8) with a correlation coefficient of 

0.89.  However, of the 20 systems, only 3 had orbital periods above 4 days.  The authors of [2] 

also introduced a catalogue of potential targets for pulsating variables in close binary systems, 

or so called oEAs.   

 In an effort to further explore the possible connections between orbital parameters and 

pulsation, I have used the data from [1], collected results from other campaigns for oEAs, and 

observed several targets from the catalogue of [2].  This resulted in the discovery of 6 new 

variables from my own campaign.  Each variable had more than one night of usable data except 

for SY Cen, which only one night of data was able to be gathered.  Further observations on each 
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object are encouraged to precisely determine the pulsation period(s) and possible modes of 

oscillation. 

 From these observations and the collections from the literature, a total of 40 systems 

were available for analysis.  The first step was construct a histogram of orbital periods binned in 

increments of 0.01 days for oEAs and compare these to the pulsation periods for single δ Scuti 

stars.  This shows that a large percentage of oEAs have pulsation periods below the average 

that of single δ Scuti stars.  This indicates that any subsequent relationships found may be real.   

Next, to gain a sense of how accurate any relationships found may be, only pulsation periods 

with known uncertainties were taken into consideration.  Each relationship was also then 

extended to include all systems for which the pertinent information was available.  In each 

case, the slopes for each relationship agree between the two methods. However, these slopes 

depend on excluding outliers in each case.  For the Ppulse vs. Porb relationship, FO Ori and EY Ori 

were the outliers, and not taken into consideration.  Interestingly, while FO Ori remained an 

outlier in every other analysis, EY Ori did not (AS Eri was also a significant outlier, also noted by 

[1]).  This leads to the conclusion that if binarity affects pulsation periods, then the orbital 

period is not the fundamental parameter to look at.  The other relationships developed were 

the potential, percentage of Roche Lobe filled by the pulsator, and force per unit mass on the 

pulsator’s surface.  In each case, the correlation coefficients were considered either significant 

or highly significant, yet to varying degrees.  Other references indicate that certain systems 

seem to be in a resonance between the orbital period and pulsation period.  However, this was 

shown to not be a uniform outcome of pulsations in close systems.  At first glance, resonance 

seems more of a coincidence than any physical mechanism. However, to determine more 



 

70 
 

certainly, more theoretical advances need to be made.  To this end as well, it was shown that 

theoretical arguments need more taken into account than simply using the period-mean 

density relation and orbital parameters in terms of the pulsators mass to derive possible 

relationships.  On the observational side, more data from which precise orbital periods and 

pulsation modes can be determined needs to be taken to test theoretical models as they are 

developed.  It may turn out that each of the orbital parameters explored depends on the mode 

of pulsation and could therefore tighten the relationships developed. 

 This line of research is important in the realm of stellar astrophysics.  Both types of 

systems (pulsating variables and eclipsing binaries) provide ways to determine certain 

properties of their respective constituents. Investigation of pulsating variables, especially if the 

mode(s) can be identified, provides a probe into the interior.  This helps provide valuable 

checks for the theory of stellar interiors.  On the other hand, eclipsing binary systems provide 

valuable quantities such as the mass and radius of each component in the system.  These data 

together should provide new tools for theoretical advances and provide constraints on the 

physical parameters of pulsating variables.  
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Appendix 

 

A.1 Conversion of Newton’s Gravitational Constant 

 This section details the conversion of Newton’s Gravitational Constant, G, from the 

familiar S.I. units to the more useful units for binary star astronomy.  The unit of time in S.I. is 

the second (s), mass is the kilogram (kg), and distance is the meter (m).  We need to convert 

these to units of 1 day for time, 1 MSUN for mass and 1 RSUN for distance. 

 In S.I. units, G = 6.67X10-11 N m2 /kg2.  N can be expressed in terms of m, kg, and s as 

N=kg m/s2.  This gives G=6.67x10-11 m3/kg s2.  Now 1 RSUN = 6.955X108 m, 1 MSUN = 1.989X1030 

kg, and 1 day = 86400 s.  Using these values gives 
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A.2 Derivation of Gravitational Potential 

 
Figure A.1. Diagram of a two-body system with Roche distortion. 
 
 Our goal is to calculate the gravitational potential on the surface of the primary star.  

The situation is complicated by the fact that often in close systems, the stars are often 

deformed from spherical symmetry.  The mathematical analysis to describe the non-spherical 

deformation was initially carried out by Roche ().  The gravitational potential is described by 

equation 2.().  There is an approximation for the distance from the center of a deformed star to 

the surface on the y-axis. We want to calculate the potential on the surface of the pulsator, 

arbitrarily labeled M1, assumed to be the more massive component.  The distance from the 

center of M1 to the surface on the y-axis is labeled S1.  The distance from the point of the test 

mass to the center of the other component is S2, and the distance from the test mass to the 

center of mass (cm) is labeled ‘r’.   
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 To derive the potential, we start with several well-known equations for two-body 

systems.  The potential itself is as: 
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We need expressions for S1, S2, r, and ω in terms of what we can either observe or derive from 

observables, namely P, G, M1, M2, and a.  To that end, we use several well-known relationships.  

 The relationships used are M1r1=M2r2, r1+r2=a, and Kepler’s Third law, which states 
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From Table 2, we’ve been giving the orbital periods and masses of the components for several 

of the systems.  From this it is straightforward to calculate the semi-major axis, a.  The 

approximation for the distance from the center to the surface on the y-axis is given as (denoted 

by S1) S1=a0.378q0.2084 where q is defined as the mass ration, M1/M2.  To simplify, let 

ξ=0.378q0.2084, thus S1=aξ.  r and S2 can both be calculated by the Pythagorean Theorem:  

r2= (S1
2+r1

2) and S2 = (S1
2+a2)1/2.   We first look at r1. 

 Rearranging the two equations above, and solving each for r2, we have 

12 rar −= , and
2

11
2 M

rMr = .                                          (A.4, A.5)  

Combining these and solving for r1 yields   

11 +
=

q
ar .                                                             (A.6)        

We can now calculate r in terms of the quantities we’re interested in.  From the Pythagorean 

Theorem above, we have 
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and rearranging yields 
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We know look at S2.  Again, from the Pythagorean Theorem we have 
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and rearranging gives 
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We now use the fact that
P
πω 2

= , and with this relationship, we’re ready to substitute all the 

quantities we’ve obtained into the expression for the gravitational potential.   
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We now let α=M1/(aξ), β=M2/[a(ξ2+1)1/2], and  γ=[a2(ξ2+(1/(q+1))2 to obtain 
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