Mahfuza Khatun

Mahfuza Khatun

Professor of Physics and Astronomy

Curriculum Vitae


Room:CP 101K

Research Interests

  • Statistical Physics: Phase Transition and Critical Phenomenon in two-dimensional Ising Models.
  • Quantum-dot Cellular Automata (QCA) devices
  • Electronic properties and Quantum Transport in Nanoscale structures: Semiconductors, Carbon nanotubes, Graphene, and Boron-Nitrides; Thermal properties of Carbon Nanotubes (CNTs) and Graphene Nanoribbons.

Selected Publications

  • K.A. Muttalib, M. Khatun, and J.H Barry, “Perpendicular susceptibility and geometrical frustration in two-dimensional Ising antiferromagnets: Exact soultions,” Phys. Rev B Vol. 96, No 18, 184411 ( 2017)
  • Mahfuza Khatun, Zhe Kan, Antonio Cancio, and Chris Nelson, “Effects of Band Hybridization on Electronic properties in Tuning Armchair Graphene Nanoribbons,” Canadian Journal of Physics Vol. 94, No. 2, pp. 218-225 (2016)
  • Zhe. Kan, Chris Nelson, and Mahfuza. Khatun, “Quantum conductance of zigzag graphene oxide nanoribbons,” Journal of Applied Physics 115, 153704 (2014).
  • M. Khatun, B. D. Padgett, G. A. Anduwan, I. Sturzu, and P. D. Tougaw, “Defect and
    Temperature Effects on Complex Quantum-dot Cellular Automata Devices,” Journal of Applied Mathematics and Physics, Published online (htttp://, August 15 (2013).
  • P. D. Tougaw and M. Khatun, “A Scalable Signal Distribution network for Quantum-dot Cellular Automata,” IEEE Transaction on Nanotechnology, Volume: 12, 2, 215-224 March(2013).
  • G. A. Anduwan, B. D. Padgett, M. Kuntzman, M. K. Hendrichsen, I. Sturzu, M. Khatun and P. D. Tougaw, “Fault-tolerance and thermal characteristics of quantum-dot cellular automata devices” J. Appl. Phys. 107, 114306 (2010).
  • M. Khatun, I. Sturzu, P. D. Tougaw and T. Barclay “Fault Tolerance Properties in Quantum-dot Cellular Automata Devices,” J. Phys. D: Appl. Phys. 39, 1489-1494 (2006).
  • M. Khatun, T. Barclay, P. D. Tougaw and I. Sturzu “Fault Tolerance Calculations for Clocked Quantum-dot Cellular Automata Devices”, Journal of Applied Physics, 98, 094904 (2005).
  • E. Mandell and M. Khatun, “Quasi-Adiabatic Clocking of Quantum-Dot Cellular Automata,” J. Appl. Phys. 94, 4116 (2003).
  • M. Khatun and J.W. Emert,”Vacancy Migration in the 3-12 Ising Ferromagnet,” Physica Status Solidi B, 231, 341 (2002).
  • M. Khatun, P.K. Joyner, R.M. Cosby, and Y.S. Joe, “Quantum Interference in a Stub-Constriction Structure Containing an Infinite Potential Barier,” J. Appl. Phys. 84, 3409 (1998).
  • M. Khatun and J. H. Barry, “Exact Solutions for Inelastic Neutron Scattering from Planar Ising Ferromagnets,” Physica A 247, 511 (1997).
  • J.H. Barry and M. Khatun, “Exact Solutions for Correlations in the Kagome′ Ising Antiferromagnet,” Int. J. Mod. Phys. B11, 93 (1997).
  • J.H. Barry and M. Khatun, "Exact Solutions for Ising-Model Correlations on the 3-12 Lattice," Phys. Rev. B51, 5840 (1995).
  • R. Delannay, G. Le Caer, and M. Khatun, "Random Cellular Structures Generated from a 2D Ising Ferromagnet," J. Phys. A: Math. Gen. 25, 6193 (1992).
  • J.H.Barry, T. Tanaka, M. Khatun, and C.H. Munera,"Exact Solutions for Odd-Number Correlations on Planar Lattices," Phys. Rev. B44, 2595 (1991).
  • M. Fahnle and M. Khatun,"On the Magnetic Contribution to the Free Enthalpy of Vacancy Migration in Ferromagnetic Crystals," Phys. Stat. Sol. A126, 109 (1991).
  • M. Khatun, J.H. Barry, and T. Tanaka, "Exact Solutions for Even-Number Correlations of the Square Ising Model," Phys. Rev. B42, 4398 (1990).
  • J.H. Barry, M. Khatun, and T. Tanaka, "Exact Solutions for Ising-model Even-number Correlations on Planar Lattices," Phys. Rev. B37, 5193 (1988).
  • J.H. Barry and M. Khatun, "Exact Solutions for Perpendicular Susceptibilities of Kagome′ and Decorated Kagome Ising Models," Phys. Rev. B35, 8601 (1987).

Research Students

During the past three decades, I have been working with many undergraduate and graduate students. Their involvements include working on doctoral thesis, master’s thesis, master’s degree research papers, honors fellowships, honors thesis, and independent research studies. Students worked mainly on different topics: Phase transition and critical phenomena on 2-D Ising models, Electron transport in semiconductor nanodevices, Quantum Dot Cellular Automata (QCA) Devices, Electronic properties and quantum transport of carbon structures (graphene, carbon nanotubes (CNTs), graphene nanoribbons, and boron-nitride nanoribbons.

Graduate Students

Tuan Le, Albert DiBenedetto, Spencer Jones, Shaun Wood, Zhe Kan, Benjamin Padgett, Adam Hinkle, Travis Barclay, Melissa Hendrichsen, Luke Kanuchok, Christopher Cochran, Eric Mandell, Gabriel A. Anduwan, Jong-Lae Kim, Philip K. Joyner

Undergraduate Students

Travis Everhart, Albert DiBenedetto, Nick Strange, Andrew Moore, Jeremy Christman, Andrew Moore, David Hines, Joseph Laslie, Josh Gevirtz, Molly Reber, Daniel Baker, Anthony Gilmore, Michael Kuntzman, Elizabeth Cougill, Kyle Crater, Travis Barclay, Michael St. Clair, Thomas Kuhlman, Brian Case, Stayte Wesley, Lisa Pawlowski


Course Schedule
Course No. Section Times Days Location
General Physics 1 110 1 1200 - 1350 T CP, room 103
General Physics 1 110 1 1300 - 1350 M W F CP, room 144
General Physics 1 110 2 1200 - 1350 R CP, room 103
General Physics 1 110 2 1300 - 1350 M W F CP, room 144
Mechanics 330 1 1000 - 1050 M W F CP, room 053
Mechanics 530 1 1000 - 1050 M W F CP, room 053